• Title/Summary/Keyword: low humidity

Search Result 1,035, Processing Time 0.031 seconds

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Changes in Circulatory and Respiratory Activities Observed on Men in an Engine Room of a Navy Ship (함정 기관실내 활동의 순환 및 호흡 기능에 대한 영향)

  • Hyun, Kwang-Chul;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.1 no.2
    • /
    • pp.199-213
    • /
    • 1967
  • Circulatory and respiratory activities were observed in men exposed to the environment of engine room of a cruising Republic of Korea Navy ship and compared to the control values obtained in an ordinary laboratory room on land. The environment of an engine room of cruising navy ship was presumed to be a multiple stress acting on men. The environment of the engine room included high temperature $(35-42^{\circ}C)$, low relative humidity (20-38% saturation), vibration (about 7 cycles per second), rolling and pitching of ship and noises. Sixteen men were divided into two groups consisted of each 8 subjects. Subjects of sea duty group had experience of continuous on board duty averaging 3.5 years. Men of land duty group had no experience of on board activity. On land observations were made on one day prior to the boarding and leaving the port and four days after landing. In between observations in the engine room were made on the first, 5 th, 9 th, 12 th, and 14 th day of on board activity. The whole experimental period lasted for 20 days. Measurements on circulatory and respiratory parameters were at standing resting state (after 30 minutes standing in the case of on land study and 15 minutes in engine room study) and within one minute after cessation of on the spot running of which rhythm was 30/min. and lasted for 5 minutes. Oxygen consumption and pulmonary function test were done in the period of two minutes from the 3rd to 5th minutes of running. The following results were obtained. 1. Body temperature showed no change regardless of group difference or on land or on board measurements. 2. Pulse rate increased markedly after boarding the ship id both groups. Pulse rate increased from the first day on board at rest and after exercise as compared to the on land control value. This increase in pulse rate was more marked after exercise. Sea duty group showed less increase in pulse rate at rest than the land duty group. Standing and resting pulse rate of sea duty group on lam was 81 and increased to 87 at the 5th day on board and remained smaller than the land duty group throughout the period on board. Control standing and resting pulse rate of land duty group on land was 76 and reached 89 at the 9th day on board and thereafter decreased a little. Pulse rate of land duty group at rest on board remained greater than that of sea duty group throughout the period on board. 3. Systolic blood pressure of sea duty group increased after boarding the ship and remained higher than the control value on land. In the land duty group, however, systolic blood pressure decreased during the period on board the ship. Diastolic blood pressure decreased in both groups. 4. Resting breathing rate of land duty group increased and remained higher than the control value on land. In sea duty group, however, resting breathing rate showed a transient increase on the 1st day on board and decreased thereafter to the control value on land and kept the same level throughout the period of cruise. Absolute value of breathing rate in the sea duty group was greater than the land duty group both at rest and after exercise. 5. There was a lowering of breathing efficiency in both groups. Thus, increases in tidal volume and minute ventilation volume and decreases in maximum breathing capacity, vital capacity, capacity ratio and air velocity Index were observed after boarding the ship. An increase in ventilation equivalent was also observed in both groups. The lowering of breathing efficiency was more marked in the land duty group than the sea duty group. 6. Energy expediture increased in both groups during their stay on the ship and was more marked in the sea duty group. 7, Lactate concentration in venous blood at rest and after exercise increased after boarding the ship and no group difference was observed.

  • PDF

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Ecological Characteristics of Termite(Reticulitermes speratus kyushuensis) for Preservation of Wooden Cultural Heritage (목조문화재의 보존을 위한 한국산 흰개미의 생태적 특성 연구)

  • Lee, Kyu-Shik;Jeong, So-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.327-348
    • /
    • 2004
  • In this study, after analyzing several local climate characteristics of South Korea, I validated distribution, invasion, foraging, underground activities, attack season as ecological characteristics and also temperature, relative humidity, and tree species as preference characteristics of Korean termites (Reticulitermes speratus kyushuensis Morimoto). Especially, southern part of the Korean peninsula is a suitable area for inhabitation and motion of termites holding same ecological characteristic like R. speratus kyushuensis. Busan is a neighboring district at field distribution north limiting temperature of Coptotermes formosanus Shiraki and Chuncheon is a passing area through the Korean Peninsula of field distribution north limiting temperature of Reticulitermes speratus Kolbe. The termite attack of wood devices was about 34.5% for 3 years in the forest of Jongmyo. Although the attack rate of termite increased each year, the detection rate decreased and the missing rate was high by degrees. I confirmed a foraging habits which is a part of termite colony was a role of continuous decomposition and another was a role of new food hunt as experimental results. The foraging termites were found under ground at Jongmyo in Seoul from April to November in the 2001 and the most active period was on July and August. The termite invasion rate of bait station increased in every monitoring. Through the increasing attack rate of bait station during 2nd monitoring (November, 2000) and 3rd monitoring(March, 2001), I confirmed that termites moved into the deep underground in winter, and were working continuously to forage. R. speratus kyushuensis inhabiting at the Korean Peninsula is a species which has food consumption rate with higher temperature. The termite revealed the greatest amount of food(filter paper) at $30^{\circ}C$(90% RH), but showed increasing death rate at over $32^{\circ}C$. Also, survival rate of this termite was 97% at 84% RH($30^{\circ}C$), but killed 100% at 52% RH($30^{\circ}C$) and 70% RH($30^{\circ}C$). For wood feeding, this was observed the preference in a pine tree(Pinus densiflora) above all others. Survival of termites was high(87%) at a pine tree, but low(13.5%) at a paulownia tree(Paulownia coreana). In this study, I presented the biological characteristic of termite(R. speratus kyushuensis Morimoto) and confirmed the deterioration degree of termite on wooden cultural heritage in Korea. Depending on climate and soil temperature, each area in the southern part of the Korea Peninsula, has some different active period and different distribution of R. speratus kyushensis. With these results, I expect that this report helps to prepare the integrated pest management(IPM) of the termite on wooden cultural heritage in Korea, and it may help to reduce the economical loss from termite damage in Korea.

Effect of Nutrient Solution Strength and Duration of Nutrient Starvation on Growth and Flowering of Two Strawberry Cultivars (양액 강도와 공급 중단 시기에 따른 삽목번식한 2품종 딸기의 생장과 개화 반응)

  • Kang, Dong Il;Jeong, Hai Kyoung;Park, Yoo Gyeong;Hwang, Seung Jae;Jeong, Byoung Ryong
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.19-28
    • /
    • 2019
  • This study was conducted to investigate the effect of nutrient solution strength and duration of nutrient starvation on the growth and development of strawberry (Fragaria x ananassa Duch.) 'Maehyang' and 'Sulhyang' at the flowering stage. Cuttings of runner plants were stuck on November 23th, 2017 and were covered with a layer of black plastic film to block light from penetrating and keep the relative humidity high. The black plastic film was removed after 16 days and rooted plants were cultivated for one month with irrigation of water. The Yamazaki nutrient solution with an electrical conductivity (EC) of 1.85 or 3.71 dS·m-1 (1x or 2x ionic strength, respectively) and pH 5.55 was fed to plants after either 0 (control), 1, 3 or 5 weeks of nutrient starvation to the end of experiment. Plant height in both cultivars decreased gradually with the increase in duration of nutritional starvation. The earlier the nutritional starvation started, the smaller the shoot fresh weight of 'Maehyang'. Hence the greatest shoot fresh weight was obtained in the control which was supplied with the nutrient solution continuously. Shoot fresh weight of 'Sulhyang' was the greatest in 1x ionic strength and one week of nutrient starvation before planting. Although number of flowers on the first flower cluster of 'Maehyang' and 'Sulhyang' showed no significant differences, 'Maehyang' had the greatest number of flowers in the 2x ionic strength solution and one week of nutrient starvation before planting, while 'Sulhyang' had that in the 1x ionic strength treatment. These results suggest that it is considered effective to supply a nutrient solution at a low concentration for a short period of time for increasing the number of flower differentiated on the first flower cluster in both cultivars.

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Rooting and Survival Rate as Affected by Various Types and Concentrations of Auxin on 'Maehyang' Strawberry in Cutting Propagation ('매향' 딸기의 삽목 번식 시 옥신의 종류 및 처리 농도에 따른 발근율과 생존율)

  • Hwang, Hee Sung;Jeong, Hyeon Woo;Lee, Hye Ri;Jo, Hyeon Gyu;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.56-64
    • /
    • 2021
  • This study was conducted to examine the effect by different types and concentrations of auxin on the rooting and growth of strawberry (Fragaria × ananassa Duch. cv. Maehyang) cuttings in the greenhouse. The NAD (1-naphthylacetamide), IBA (indole-3-butyric acid), and IAA (3-indoleacetic acid) were applied with a 1 hour soaking as 50, 100, 150, and 200 mg·L-1, respectively. The non-treatment was set as the control. The cuttings of strawberry were transplanted in the strawberry seedling tray filled with coir medium on June 4, 2020. The humidification was carried out for 2 weeks. The average relative humidity, daytime temperature, and nighttime temperature inside the humidification tunnel was 63.4 ± 15%, 29.3 ± 5℃, and 16.2 ± 5℃, respectively. There was no significant difference in rooting rate on the control, IBA, and IAA treatments. However, significantly low rooting rates were observed in NAD treatments. The survival rates were significantly higher in the control and IBA with 50 mg·L-1 than in other treatments. The number of leaves was the highest in IBA with 100 mg·L-1. The root length was the longest in the control. More number of roots were counted in IAA with 100 and 150 mg·L-1. The dry weight of root was the heaviest in the control. The total root length, root surface, number of root tips, and number of root forks were significantly higher in the control. As a result, control, IAA, and IBA showed similar shoot and root growth. However, NAD showed the worst root and shoot growth. Consequently, compared with IAA and IBA, NAD was not appropriate plant growth regulator of rooting for cutting propagated strawberries.

Characteristics and pedigree selection of a shortened cultivation period strain in Lepista nuda (재배기간이 짧은 민자주방망이버섯 우량계통 선발 및 특성)

  • Jeon, Jong-Ock;Lee, Kwan-Woo;Lee, Kyoung-Jun;Kim, Min-Ja;Kim, In-Jae;Kim, Young-Ho
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • This study was conducted to cultivate new Lepista nuda varieties with shorter cultivation period and better fruiting body compared to that of wild strains, for mass production and commercial application. Eighteen genetic resources of L. nuda were collected and grown in boxes using rice straw-fermented growth medium. Four lines with fruiting bodies were formed and selected as cross-breeding lines. Although 657 combinations were crossed through monospore crossing, only 17 combinations were bred between the 'CBMLN-19' line and the 'CBMLN-30' line. Among them, 8 lines with fast mycelial growth and high density were selected. After inoculating the rice straw-fermented growth medium with 14 genetic resources and 8 cross-breeding lines, their incubation period was investigated. Six of the cross-breeding lines completed their incubation in 20 days, while 7 of the 14 genetic resources took more than 40 days to complete their incubation, reducing the incubation period by more than 20 days in most cross-breeding lines. After the incubations were completed, the clay loam soil was covered with for post-cultivation, and when the mycelial cultivation was complete, the formation of fruiting bodies was induced after scraping the mycelial bodies under these environmental conditions: 14℃, 95% relative humidity or higher, and 1,500 to 2,000 ppm CO2 concentration. The temperature was reduced to 6℃ at night, resulting in a low temperature shock. Thus, 4 lines of fruiting bodies occurred from two genetic resources 'CBMLN-31' and 'CBMLN-44' and two cross-bred lines 'CBMLN-96' and 'CBMLN-103'. After inoculation, the longest period for fruiting bodies to occur was 100 days for the control:, the genetic resource 'CBMLN-31', and the shortest period (45 days) was observed for the cross-breeding line 'CBMLN-103'. The result of the investigation of the fruiting body characteristics shows that the cross-bred line 'CBMLN-103' showed a small form with 1.9 g of individual weight and 123validstipes per box, which was the highest incidence among the four lines. Another cross-bred line, 'CBMLN-96', had an individual weight of 5.5 g, which is larger than that of 'CBMLN-103'; however, the number of valid stipes per box was 30 less than that of 'CBMLN-103'. Quantity analysis showed that the control, 'CBMLN-31', had the highest quantity of 783 g per box, followed by the cross-bred line, 'CBMLN-96' with 165 g per box, and then the 'CBMLN-103' with 232 g. The quantity of the two crossbred lines was lower than that of the control 'CBMLN-31'; however, the amount of fruiting bodies was higher, and the cultivation period was shortened by 32 to 33 days. Therefore, these two lines would be selected as superior lines.

A Study on change in thermal properties and chemical structure of Zr-Ni delay system by aging (노화에 따른 Zr-Ni계 지연관의 열 특성 및 화학적 구조 변화에 관한 연구)

  • Park, Byung Chan;Chang, Il Ho;Kim, Sun Tae;Hwang, Taek Sung;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.285-292
    • /
    • 2009
  • It has been observed that, after long term storage, some ammunitions are misfired by tamping (combustionstopping) due to aging of the chemicals loaded in the ammunitions. Used in ammunitions are percussion powder which provides the initial energy, igniter which ignites the percussion powder, and a delay system that delays the combustion for a period of time. The percussion powder is loaded first, followed by the igniter and then the delay system, and the ammunitions explode by the energy being transferred in the same order. Tamping occurs by combustion-stopping of the igniter or insufficient energy transfer from the igniter to the delay system or the combustion-stopping of the delay system, which are suspected to be caused by low purity of the components, inappropriate mixing ratio, size distribution of particulate components, type of the binder, blending method, hydrolysis by the humidity penetrated during the long term storage, and chemical changes of the components by high temperature. Goal of this study is to find the causes of the combustion-stopping of the igniter and the delay system of the ammunitions after long term storage. In this study, a method was developed for testing of the combustion-stopping, and the size distributions of the particulate components were analyzed with field-flow fractionation (FFF), and then the mechanism of chemical change during long term storage was investigated by thermal analysis (differential scanning calorimetry), XRD (X-ray diffractometry), and XPS (X-ray photoelectron spectroscopy). For the ignition system, M (metal)-O (oxygen) and M-OH peaks were observed at the oxygen's 1s position in the XPS spectrum. It was also found by XRD that $Fe_3O_4$ was produced. Thus it can be concluded that the combustion-stopping is caused by reduction in energy due to oxidation of the igniter.