• Title/Summary/Keyword: low frequency voltage ripple

Search Result 107, Processing Time 0.026 seconds

A New PWM-Controlled Quasi-Resonant Converter for High Efficiency PDP Sustaining Power Module (고효율의 PDP 유지 구동 전원단을 위한 새로운 펄스폭 제어방식의 쿼지 공진 컨버터)

  • Lee Woo-Jin;Choi Seong-Wook;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.352-355
    • /
    • 2006
  • A new PWM-controlled quasi-resonant converter for high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with hi-directional auxiliary circuit, while the main switches are operating at the fixed duty ratio and fixed switching frequency. Hence, the waveform of currents can be expected to be optimized on the conduction loss. Furthermore, the proposed converter shows the good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stress of power switches. In this paper, operational principles, analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit as PWM method.

  • PDF

A New PWM-Controlled Quasi-Resonant Converter for a High Efficiency PDP Sustaining Power Module

  • Lee, Woo-Jin;Choi, Seong-Wook;Kim, Chong-Eun;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • A new PWM-controlled quasi-resonant converter for a high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with a bi-directional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stresses of power switches. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.

Single-Stage High-Power-Factor Electronic Ballast with a Symmetrical Class-DE Resonant Rectifier

  • Ekkaravarodome, Chainarin;Jirasereeamornkul, Kamon
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.429-438
    • /
    • 2012
  • This paper presents the use of a novel, single-stage high-power-factor electronic ballast with a symmetrical class-DE low-$d{\upsilon}$/$dt$ resonant rectifier as a power-factor corrector for fluorescent lamps. The power-factor correction is achieved by using a bridge rectifier to utilize the function of a symmetrical class-DE resonant rectifier. By employing this topology, the peak and ripple values of the input current are reduced, allowing for a reduced filter inductor volume of the EMI filter. Since the conduction angle of the bridge rectifier diode current was increased, a low-line current harmonic and a power factor near unity can be obtained. A prototype ballast, operating at an 84-kHz fixed frequency and a 220-$V_{rms}$, 50-Hz line input voltage, was utilized to drive a T8-36W fluorescent lamp. Experimental results are presented which verify the theoretical analysis.

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

Analysis of a Synchronizing PLL System for Single-phase Grid-tie Inverters (단상 그리드연결형 인버터의 동기화를 위한 PLL 시스템 해석)

  • Tran, Quang-Vinh;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.447-452
    • /
    • 2008
  • In the paper, the product-type PLL system, which is so suitable for synchronizing a single phase grid voltage is designed. The PLL system is modelled with the small signal analysis. Both the cut-off frequency of low pass filter and the optimal gain are derived by considering the transient response for synchronization as well as a distortion of synchronization signal. Through the simulation studies and experimental results, the transient response and ripple component of synchronization signal are investigated with a variation of both the cut-off frequency and gain in order to verify the performance of design.

High Power Density 50kW Bi-directional Converter for Hybrid Electric Vehicle HDC (하이브리드 자동차용 HDC를 위한 50kW급 고전력밀도 양방향 컨버터)

  • Yang, Jung-Woo;Keum, Moon-Hwan;Choi, Yoon;Han, Sang-Kyoo;Kim, Seok-Joon;Kim, Sam-Gyun;Kim, Jong-Pil;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • This paper proposed a high-power density bidirectional converter for hybrid electric vehicle high-voltage DC-DC converter(HDC). The conventional HDC has two disadvantages. First, large inductance is required to satisfy the ripple current of inductor by low switching frequency (<20 kHz). Second, large core size is required to prevent the saturation of inductor by high current. Compared with the conventional HDC, the proposed HDC can reduce inductance with SiC-FET for high frequency driving. High-power density of I/O capacitors can be achieved through two-phase interleaved method. The high-power density of inductors can be achieved because the offset current of magnetizing inductance is theoretically terminated by using the differential mode coupled inductor instead of using two single inductors. The validity of the proposed converter is proved through the 50 kW prototype.

Capacitor Failure Detection Technique for Microgrid Power Converter (마이크로그리드 전력변환장치용 커패시터 고장 검출 기법)

  • Woo-Hyun Lee;Gyang-Cheol Song;Jun-Jae An;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1117-1125
    • /
    • 2023
  • The DC part of the DC microgrid power conversion system uses capacitors for buffers of charge and discharge energy for smoothing voltage and plays important roles such as high frequency component absorption, power balancing, and voltage ripple reduction. The capacitor uses an aluminum electrolytic capacitor, which has advantages of capacity, low price, and relatively fast charging/discharging characteristics. Aluminum electrolytic capacitors(AEC) have previous advantages, but over time, the capacity of the capacitors decreases due to deterioration and an increase in internal temperature, resulting in a decrease in use efficiency or an accident such as steam extraction due to electrolyte evaporation. It is necessary to take measures to prevent accidents because the failure diagnosis and detection of such capacitors are a very important part of the long-term operation, safety of use, and reliability of the power conversion system because the failure of the capacitor leads to not only a single problem but also a short circuit accident of the power conversion system.

Analysis and Compensation of Current Measurement Error in Digitally Controlled AC Drives (디지털 제어 교류 전동기 구동시스템의 전류 측정 오차 해석 및 보상)

  • 송승호;최종우;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.462-473
    • /
    • 1999
  • This paper addresses the current measurement issue of all digital field oriented control of ac motors. The p paper focuses on the effect of low-pass filter and also on the sampling of the fundamental component of the m motor current. The low-pass filter, which suppresses the switching noise of the motor current, introduces v variable phase delay according to the current ripple frequency. It is shown that the current sampling error c consists of the fundamental component and high frL'quency ripple components. In this paper, the dependency of t this current sampling e$\pi$or on the reference voltage vector is investigated analytically and a sampling technique i is proposed to minimize the error. The work is based on the three phase symmetry pulse width modulation l inverter driving an induction machine. With this technique, the bandwidth of current regulator can be extended t to the limit given by the switching frequency of the inverter and more precise torque regulation is possible.

  • PDF

A ZVS-CV Buck Converter using Thin-Film Inductor (박막 인덕터를 이용한 영전압 스위칭 Clamp Voltage Buck 컨버터에 관한 연구)

  • Kim, Young-Jae;Kim, Hee-Jun;Oh, Won-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.56-63
    • /
    • 2000
  • Buck converter is considered to be one of the most widely used DC-DC converters due to its simple structure and high reliable performance. However, when it be combined with thin-film inductor, its own low inductance requires higher switching frequency in order to maintain optimum output ripple voltage and thus gives rise to extra switching losses. In view to overcoming such a technical inconvenience, soft switching fashion is suggested such as zero-voltage-switching of which an well known example is a Zero-Voltage-Switching clamp voltage(ZVS-CV) converter for which low inductance is imperatively required for ZVS operation. In order to support our suggestion, a 1W ZVS-CV buck converter is built by use of thin-film inductor, and then tested it. From the results of experiment and loss analysis, it is proved that the ZVS operation is well achieved and the measured efficiency of the converter is improved about 4% at full load comparing the conventional buck converter.

  • PDF

Sensorless Operation of Low-cost Inverters through Square-wave High Frequency Voltage Injection (사각 고주파 주입을 통한 저가형 인버터의 센서리스 운전)

  • Hwang, Sang-Jin;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2022
  • In this paper, the efficiency of a sensorless method with square-wave injection for a low-cost inverter, so called B4 inverter is presented. This inverter comprises only 4 switches to reduce system cost. It is distinguished from the conventional B6 inverter that has 6 of switching elements. The B4 inverter, injected a 1 kHz of harmonic wave, has been modelled using the functions and library in Matlab/Simulink. This paper described each component of sensorless algorithm. Among them, the Notch Filter is used to extract the harmonic component of the phase current and a second-order low-pass filter was used to reduce the ripple of the estimated speed. It is shown through simulation that the rotor angle of a permanent magnet synchronous motor is detected by multiplying the current waveform extracted using the notch filter by the harmonic voltage. The feasibility of the proposed method is shown through Simulink simulation.