• Title/Summary/Keyword: low frequency transformer

Search Result 241, Processing Time 0.025 seconds

Development of 3.0[kW]class Fuel Cell Power Conversion System (3[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.54-63
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage $380[V_{DC}]$ and a PWM inverter with LC filter to convent the DC voltage to single-phase $220[V_{AC}]$. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%]is obtained over the wide output voltage regulation ranges and load variations.

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.

A Study on the Detection of Acoustic Signal Produced by Partial Discharges in Insulation Oil and its Positioning (부분방전에 의한 음향신호의 검출과 위치추정에 관한 연구)

  • Kil, Gyung-Suk;Park, Dae-Won;Kim, Il-Kwon;Choi, Su-Yeon;Park, Chan-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.907-911
    • /
    • 2007
  • This paper dealt with the frequency spectrum analysis of acoustic signal produced by partial discharge (PD) in insulation oil and the positioning of PD occurrence to apply in diagnosis of oil insulated transformers. Three types of electrode system ; the needle-plane, the plane-plane, and the wire-wire structure were assembled to simulate partial discharges in oil insulated transformers. A low-noise amplifier and a decoupling circuit were designed to detect acoustic signal with high sensitivity The frequency spectrum of the acoustic signal were 50 kHz ${\sim}$ 260 kHz in the needle-plane, 50 kHz ${\sim}$ 250 kHz in the plane-plane, and 45 kHz${\sim}$195 kHz in the wire-wire electrode system. Their peak frequencies were 145 kHz, 130 kHz and 114 kHz, respectively The position of PD occurrence was calculated by the time difference of arrival (TOA) using three acoustic emission (AE) sensors, and we could find the position within the error of 1 % in the experimental apparatus.

A New High Frequency Linked Soft-Switching PWM DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers for High Performance Arc Welder

  • Kang, Ju-Sung;Fathy, Khairy;Saha, Bishwajit;Hong, Doo-Sung;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.399-402
    • /
    • 2006
  • This paper presents a new circuit topology of dc bus line switch-assisted half-bridge soft switching PWM inverter type dc-dc converter for arc welder. The proposed power converter is composed of typical voltage source half-bridge high frequency PWM inverter with a high frequency transformer link in addition to dc bus line side power semiconductor switching devices fer PWM control scheme and capacitive lossless snubbers. All the active power switches in the half-bridge arm and dc bus lines can achieve ZCS turn-on and ZVS turn-off commutation operation and consequently the total turn-off switching losses can be significantly reduced. As a result, a high switching frequency of using IGBTs can be actually selected more than about 20 kHz. The effectiveness of this new converter topology is proved for low voltage and large current dc-dc power supplies such as arc welder from a practical point of view.

  • PDF

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.

Study on the Fly-back Topology of New Power Feed-back Method for Active Cell Balancing (엑티브 셀 밸런싱을 위한 새로운 전력 피드백 방식의 플라이백 토폴로지에 관한 연구)

  • Seong-Yong Kang;Myeong-Jin Song;Seong-Mi Park;Sung-Jun Park;Jae-Ha Ko
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1083-1095
    • /
    • 2023
  • Recently, the demand for low-voltage, high-capacity ESS is rapidly increasing due to the revitalization of the e-mobility industry, which is mainly powered by electricity. In addition, the demand for portable power banks is rapidly increasing due to the revitalization of leisure industries such as camping and fishing. The ESS with this structure consists of a small number of series cells and many parallel cells, resulting in a system with a large rated current. Therefore, the number of power devices for cell balancing configured in series is small, but a balancing device with a large current capacity is required. Construction of a constant temperature device in such a low-voltage, high-current ESS is difficult due to economic issues. The demand for an active balancing system that can solve the passive balancing heating problem is rapidly increasing. In this paper, propose a power feedback fly-back topology that can solve the balancing heating problem. The characteristic of the proposed topology is that a series-connected voltage sharing voltage is used as the input of the flyback converter, and the converter output is connected to one transformer. In this structure, the converter output for cell voltage balancing shares magnetic flux through one high-frequency transformer, so the cell voltage connected to the converter automatically converges to the same voltage.

Voltage-Fed Push-Pull PWM Converter Featuring Wide ZVS Range and Low Circulating Loss with Simple Auxiliary Circuit

  • Ye, Manyuan;Song, Pinggang;Li, Song;Xiao, Yunhuang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.965-974
    • /
    • 2018
  • A new zero-voltage-switching (ZVS) push-pull pulse-width modulation (PWM) converter is proposed in this paper. The wide ZVS condition for all of the switches is obtained by utilizing the energy stored in the output inductor and magnetizing inductance. As a result, the switching losses can be dramatically reduced. A simple auxiliary circuit including two small diodes and one capacitor is added at the secondary side of a high frequency (HF) transformer to reset the primary current during the circulating stage and to clamp the voltage spike across the rectifier diodes, which enables the use of low-voltage and low-cost diodes to reduce the conducting and reverse recovery losses. In addition, there are no active devices or resistors in the auxiliary circuit, which can be realized easily. A detailed steady operation analysis, characteristics, design considerations, experimental results and a loss breakdown are presented for the proposed converter. A 500 W prototype has been constructed to verify the effectiveness of the proposed concept.

Study on High Efficiency Boosting-up Circuit for Renewable Energy Application (신재생에너지용 연계형 인버터의 고효율 승압에 관한 연구)

  • Jung, Tae-Uk;Kim, Ju-Yong;Choi, Se-Kwon;Cho, Jun-Seok;Kho, Hee-Seok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.336-339
    • /
    • 2009
  • In this paper, such as battery power or solar energy and fuel cells generated from Renewable energy sources, high voltage to low voltage DC-DC Converter for converting the design of the study. System consists of low voltage ($24{\sim}28$ [VDC]) and Boosts the voltage (270 [VDC]) for a 3 [kW] DC-DC converter and control circuit is configured as, Power switch the ST Tomson's Automotive low voltage high current MOSFET switches STE250NS10S (temperature 250A) was applied to the two parallel. Also, Controller's processor used ATMEGA128, and Gate Drive applies and composed Photo Coupler TLP250. development. Input voltage (24V) and output voltage (270V) for Conversion in the H-bridge converter topology of the circuit output side power and voltage to control the implementation of the Phase shift angle control applied. And, 3kW of power to pass appropriate specification of the secondary side as interpreted by the high frequency transformer, and the experimental production and analysis of the experiment

  • PDF

Development of DC-DC Converter for Arc Welding Machines using A Novel Half Bridge Soft Switching PWM Inverter (새로운 하프 브리지 소프트 스위칭 PWM 인버터를 이용한 용접기용 DC-DC 컨버터의 개발)

  • Kwon, Soon-Kurl;Mun, Sang-Pil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.60-67
    • /
    • 2008
  • This paper presents a new full-bridge soft switching PWM DC-DC converter circuit topology that adding two switcher, two lossless snubber quasi-resonance capacity, two diode to power source for general welding machine. This half bridge soft switching Is low voltage hight current output that first coil current is smaller than second coil current in high frequency transformer can be obtained with decreasing path loss in conventional DC bus line switcher. As it operate ZCS/ZVS in full range, high frequency, high efficiency and high output are implemented at low voltage and high DC current switching power supplies. All of this items are got from simulation and the result of experiment. If make up for the weak points of this proposed circuit, it will be used more easily for next generation TIG, MIG and MAG type of arc-welding machine.

Development of Arc Welding Machines DC-DC Converter using A Novel Full-Bridge Soft Switching PWM Inverter (새로운 풀-브리지 소프트 스위칭 PWM 인버터를 이용한 용접기용 DC-DC 컨버터의 개발)

  • Kwon, Soon-Kurl;Mun, Sang-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.26-33
    • /
    • 2008
  • This paper presents a new full-bridge soft switching PWM DC-DC converter circuit topology that adding one switcher, one lossless snubber quasi-resonance capacity to power source for general welding machine This full-bridge soft switching DC-DC convoter· topology can applicable 600[V] switching device (IGBT)incase of AC 400[V] common power source because the voltage of active switcher is 1/2 of DC bus line voltage. And low voltage hight current out)ut that first coil current is smaller than second coil current in high frequency transformer can be obtained with decreasing path loss in conventional DC bus line switcher. As it operate ZCS/ZVS in full range, high frequency, high efficiency and high output are implemented at low voltage and high DC current switching power supplies. All of this items are got from simulation and the result of experiment. If make up for the weak points of this proposed circuit, it will be used more easily for next generation TIG, MIG and MAG type of arc-welding machine.