• Title/Summary/Keyword: low fat products

Search Result 214, Processing Time 0.021 seconds

Analysis of Nutritional Compounds and Antioxidant Effect of Freeze-Dried powder of the Honey Bee (Apis mellifera L.) Drone (Pupal stage) (서양종 꿀벌(Apis mellifera L.) 수벌번데기 동결건조 분말의 영양학적 성분 및 항산화 효과)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Kim, Ji-Soo;Kim, Ho-Hyuk;Moon, Jae-Hak;Choi, Yong-Soo
    • Korean journal of applied entomology
    • /
    • v.59 no.3
    • /
    • pp.265-275
    • /
    • 2020
  • In this study, we analyzed the nutritional ingredients of drone pupae (16th to 20th instar old) to evaluate the value of bee products and provide basic data for product diversification, and the extracts prepared using these pupae were tested for physiological activity. According to the analysis of the general ingredients of the freeze-dried powder of these bee pupae, the moisture, crude protein, crude fat, and crude ash was 1.69 ± 0.07%, 48.52 ± 0.20%, 23.41 ± 0.14%, and 4.05 ± 0.02%, respectively. Vitamin C and vitamin E were 14.92 ± 0.52 mg/100 g and 6.06 ± 0.11 mg α-TE/100 g, respectively. Regarding minerals, the highest content of K (1349.13 ± 34.57 mg/100 g) and P (1323.55 ± 43.85 mg/100 g) was observed and Ca and Fe were 55.43 ± 1.51 mg/100 g and 5.49 ± 0.19 mg/100 g, respectively. The fatty acids of the water extracted freeze-dried pupae powder accounted for approximately 59.62 of saturated fatty acids and 40.38 of unsaturated fatty acids, and high-quality fatty acids such as palmitic acid (C16:0) was 35.49 ± 0.08 and oleic acid (C18:1, n-9) was 35.91 ± 0.22 (g/100 g total fatty acids). The total amino acid content was 38.99 ± 2.63 g/100 g and the free amino acid was a total of 5129.04 mg/100 g, of which 1257.68 mg/100 g was proline and 759.12 mg/100 g glutamic acid. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the drone pupae extract showed values of 0.8 for distilled water extract, 3.2 for 50% EtOH extract, 6.4 for 70% EtOH extract, and approximately 90% for 32 ㎍/mL for 100% EtOH extract. These results suggest that the main compound contributing to the antioxidant activity is a polar compound, and it is highly likely to be a low-molecular protein or a free amino acid. In conclusion, the honey bee drone pupa is excellent as a food resource and can be utilized as a new functional material for food and functional food.

The Effects of Salt and NaNO2 on Physico-Chemical Characteristics of Dry-cured Ham (소금과 아질산염 처리수준에 따른 건염햄의 이화학적 특성)

  • Seong, Pil-Nam;Kim, Jin-Hyoung;Cho, Soo-Hyun;Lee, Chang-Hyun;Kang, Dong-Woo;Hah, Kyoung-Hee;Lim, Dong-Gyun;Park, Beom-Young;Kim, Dong-Hoon;Lee, Jong-Moon;Ahn, Chong-Nam
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.493-498
    • /
    • 2008
  • The aim of this work was to analyze the effects of salt and $NaNO_2$ on weight loss, proximate compositions. chemical parameters and texture characteristics of dry-cured ham processed using Korean methods. Four different treatments were considered: The HS group of 3 hams (11.30 kg) was salted with 9.2 g/kg salt (w/w) (high salt batch), the HS+$NaNO_2$ group of 3 hams (10.65 kg) was salted same as HS group and added 100 ppm $NaNO_2$. The LS group of 3 hams (11.42 kg) was salted with 6.2 g/kg salt (w/w) (Low salt batch), the LS+$NaNO_2$ group of 3 hams (10.62 kg) was salted same as LS group and added 100 ppm $NaNO_2$. The highest weight losses took place at the drying stage (27.46, 28.25, 26.99, and 28.42%). However, there were no significant differences in the weight losses between treatments (p>0.05). The moisture content was significantly affected with addition of $NaNO_2$ (p<0.05), the LS hams had significantly higher moisture content than HS+$NaNO_2$ and LS+$NaNO_2$ (p<0.05). The level of salt and $NaNO_2$ did not affect the fat, protein and ash contents. The hardness and chewiness in biceps femoris muscle from LS hams were significantly lower than in the muscles from HS+$NaNO_2$ hams (p<0.05). The $NaNO_2$ did not affect the texture characteristics of dry-cured hams. The processing conditions significantly affected the chemical parameters of biceps femoris muscle (p<0.05). The water activity in biceps femoris muscle from LS hams was significantly higher than in muscles from HS and HS+$NaNO_2$ hams (p<0.05). The salt content in biceps femoris muscles from LS+$NaNO_2$ hams was significantly lower than in the muscles from HS and HS+$NaNO_2$ hams (p<0.05). The $NaNO_2$ treatment did not affect the $NaNO_2$ content in biceps femoris muscles (p>0.05). The processing conditions did not significantly affect the lightness (L), redness (a), and $h^{\circ}$ of biceps femoris muscles (p>0.05). The yellowness (b) and chroma in biceps femoris muscle from HS+$NaNO_2$ hams were significantly higher than in the muscles from HS and LS hams.

Food Group and Dietary Nutrient Intakes by Sugar-Sweetened Beverage Intake Level in Korean High School Students Using the Data from 2007~2015 Korea National Health and Nutrition Examination Survey (2007~2015 국민건강영양조사를 이용한 고등학생의 가당음료 섭취 수준에 따른 식품군 및 영양 섭취 실태)

  • Kim, Sun Hyo
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.2
    • /
    • pp.95-113
    • /
    • 2021
  • This study examined the food group and dietary nutrient intakes by sugar-sweetened beverage(SSB) intake level in high school students aged 15~18 years(n=2,377) using the 2007~2015 Korea National Health and Nutrition Examination Survey. Subjects were classified into three groups by SSB(included carbonated drinks, sports drinks, and caffeinated drinks that contained added sugars) intake level obtained from 24-hour recall method: SSB 1(SSB intake 0 g/d), SSB 2(0 g/d < SSB intake < 50th percentile) and SSB 3(SSB intake ≥ 50th percentile). Result of daily intakes of SSB were 160.6±10.5 g/d for boys and 98.6±7.1 g/d for girls and it increased for boys(p<0.0001) and girls(p=0.0280) by year. The highest intakes were carbonated drinks followed by fruit juices for boys and girls. Intakes of carbonated drinks increased as 2.7 times for boys(p<0.0001) and 1.6 times for girls between 2007 and 2015 year. Daily intakes of vegetables were the lowest in SSB 3 of three groups for boys and girls(p<0.0001), and those of fruits were lower in SSB 2 and SSB 3 than SSB 1 for boys(p=0.0013). Daily intakes of milk & milk products decreased toward SSB 3 group for boys(p<0.0001) while those were the lowest in SSB 3 of three groups for girls. Daily intakes of dietary fiber(21.3~25.3%) and calcium(49.6~59.8%) were very low compared to the dietary reference intakes. Percentage of daily intakes compared to the dietary reference intakes increased for energy for boys and girls(p<0.0001) while decreased for vitamin C toward SSB 3 group for boys(p<0.0001) and girls(p=0.0382). Those of calcium were the lowest in SSB 3 of three groups for boys(p<0.0001) and girls(p=0.0008). Ratio of excess intakes of energy/fat increased toward SSB 3 group for boys and girls(p=0.0002). Ratio of calcium deficiency was not different among groups but that was very high(85.9~92.5%). Therefore, it should be emphasized to reduce SSB intakes in order to improve diversity in food group and dietary nutrient intakes among high school students through dietary education and government support.

Study on the Manufacturing Properties of Korean-type Koumiss (한국형 Koumiss제조 특성에 관한 연구)

  • Lee, Jong-Ik;Song, Kwang-Young;Chon, Jung-Whan;Hyeon, Ji-Yeon;Seo, Kun-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.3
    • /
    • pp.367-375
    • /
    • 2011
  • For this study, Korean-type Koumiss was made by the fermentation of mixed cultures, in which yeast, Kuyveromyces, and microflora, Streptococcus thermophiles and Lactobacillus bulgaricus, were inoculated into 10% skimmed milk with added whey powder(control: A, 2%: B, 4%: C, 6%: D, and 8%: E). Fat, protein, lactose, titratable acidity, pH, the number of lactic acid bacteria, the number of yeast, alcohol content, volatile fatty acids, volatile free amino acids and minerals were measured in the products. The results were as follows: As the dosage of whey powder increased, fat increased from 0.74% in the control to 2.30% in sample E, protein increased from 2.95% in the control to 4.39% in sample E and lactose increased from 3.10% in the control to 7.43% in sample E. Titratable acidity and pH increased gradually. The number of lactic acid bacteria increased from $10^9\;cfu/m{\ell}$ in the control to $3.8{\times}10^9\;cfu/m{\ell}$ in sample E, and the number of yeast increased from $6.1{\times}10^7\;cfu/m{\ell}$ in the control to $1.65{\times}10^8\;cfu/m{\ell}$ in sample E, according to the increase of whey powder content. For alcohol content, the average values were 0.863%, 0.967%, 0.890%, 1.290%, and 1.313% for the control and samples B, C, D, and E, respectively. As the dosage of whey powder increased, alcohol content showed a tendency to gradually increase. The average alcohol content of E was 1.313 and this was higher than the alcohol content of Kazahstana-type Koumiss with 1.08%. Sixteen types of free amino acids were detected. Glycine was the lowest in the control at $0.38mg/m{\ell}$ and sample E contained $0.64mg/m{\ell}$. Histidine was also low in the control at $0.42mg/m{\ell}$ and sample E contained $0.65mg/m{\ell}$. On the other hand, glutamic acid was highest at $4.13mg/m{\ell}$ in the control whereas sample E had $6.96mg/m{\ell}$. Proline was also high in the control at $1.71mg/m{\ell}$ in control, but E contained $2.80mg/m{\ell}$. Aspartic acid and leucine were greater in sample E than in the control. For volatile free fatty acids, content generally had a tendency to increase in the control, and samples B, C, D, and E. Content of acetic acid gradually increased from $12,661{\mu}g/100m{\ell}$ in the control to $37,140{\mu}g/m{\ell}$ in sample E. Butyric acid was not detected in the control and was measured as $1,950{\mu}g/100m{\ell}$ in sample E. Caproic acid content was $177{\mu}g/100m{\ell}$ in the control and $812{\mu}g/100m{\ell}$ in sample E, and it increased according to the increase of whey powder content. Valeric acid was measured in a small amount in the control as $22{\mu}g/100m{\ell}$, but it was not detected in any other case. Mineral contents of Ca, P, and Mg increased from 1,042.38 ppm, 863.61 ppm, and 101.28 ppm in the control to 1,535.12 ppm, 1,336.71 ppm, and 162.44 ppm in sample E, respectively. Na content was increased from 447.19 ppm in the control to 1,001.57 ppm in sample E. The content of K was increased from 1,266.39 ppm in the control to 2,613.93 ppm in E. Mineral content also increased with whey powder content. In sensory evaluations, the scores increased as whey powder content increased. Flavor was lowest in the control with 6.3 points and highest in E with 8.2 points. Body and texture were highest at 4.2 points in the control, which did not have added whey powder. In the case of appearance, there were no great differences among the samples.