• Title/Summary/Keyword: low energy

Search Result 12,036, Processing Time 0.037 seconds

Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat (저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

Performance Analysis of Kalina Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Energy Source (저온 열원 활용을 위한 암모니아-물 혼합물을 작동유체로 하는 칼리나 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Se-Woong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.109-117
    • /
    • 2011
  • Since the thermal performance of cycles for use of low-temperature source is low if a pure working fluid is used, the cycles using ammonia-water binary mixture as a working fluid has attracted much attention over past two decades. Recently, several commercial power plants using Kalina cycles have been built and being operated successfully. In this work thermodynamic performance of Kalina cycles using ammonia-water mixture as a working fluid is investigated for the purpose of extracting maximum power from low-temperature energy source. Special attention is paid to the effect of system parameters such as concentration of ammonia and turbine inlet pressure on the characteristics of the system. Results show that the system performance is influenced sensitively by the ammonia concentration, and the role of the performance of heat exchangers is crucial.

Emergency Rescue Request Notification Service Using Bluetooth Low Energy Technology (Bluetooth Low Energy 기술을 이용한 긴급구조요청 알림서비스)

  • Kim, Sung-Jin;Cho, Kyoung-woo;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.529-530
    • /
    • 2016
  • When the mountain accident occurred, the accident victims should inform anyone of information of the location and accident situation rapidly. But if you are in the radio shadow area where you cannot use GPS, 3G/4G, and wireless communication, you can't inform someone your accidents. In this paper, we suggest the emergency rescue request notification service in situation that victims can't report their accidents. This service is to send request message for rescue in radio shadow area, in mountain accident, by BLE(Bluetooth Low Energy).

  • PDF

Quadrant Analysis in Correlation between Mechanical and Electrical Properties of Low-Temperature Conductive Film Bonded Crystalline Silicon Solar Cells

  • Baek, Su-Wung;Choi, Kwang-Il;Lee, Woo-Hyoung;Lee, Suk-Ho;Cheon, Chan-Hyuk;Hong, Seung-Min;Lee, Kil-Song;Shin, Hyun-Woo;Yan, Yeon-Won;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • In this study, we analyzed the correlation between mechanical and electrical properties of low-temperature conductive film (LT-CF) bonded silicon solar cells by a quadrant analysis (horizontal axis (peeling strength), vertical axis (power loss)). We found that a series of points with various bonding parameters such as bonding temperature, pressure and time were distributed in the different three regimes; weak regime (Q2: weak bonding strength and high power loss), moderate regime (Q4 : strong bonding strength and low power loss) and hard regime (Q3 : weak bonding strength and low power loss). Using this analogous technique, it was possible to fabricate the LT-CF bonded silicon solar cells with the various conditions displayed in Q3 of the quadrant plots, possessing the peeling strength of ~ 1N/mm and power loss of 2~3%.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Energy Value of Breakfast and Its Relation to Total Daily Nutrient Intake and Serum Lipid in Korean Urban Adults (도시성인 아침식사의 열량기 및 이의 영양소 섭취와 혈청 지질 수준간의 관련성 연구)

  • 현화진;이정원;곽충실;송경희
    • Korean Journal of Community Nutrition
    • /
    • v.3 no.3
    • /
    • pp.368-379
    • /
    • 1998
  • The purpose of this study was to assess the energy value of breakfast and its relation to total daily nutrient intake and serum lipid. Dietary intakes were evaluated through the 3-day dietary recalls(interview for 1day and self-report for 2 days) from 333 Korean urban adults aged 20-49 year. Serum lipids in fasting blood samples were measured form 98 of those 333 adults. Low energy breakfast(<15% of daily energy intake) was consumed by 22.6% of males and 18.5% of females. 59.4 of males and 43.3% of females consumed a breakfast of average energy intake(15-25% daily energy intake) ; and 18.1 of males and 38.2% of females consumed a significant contribution to a total daily nutrient intake. The daily nutrient intake except crude fiber and vitamin A, B, B, and C in males and except vitamin C in females significantly increased as the energy value of breakfast increased. The differences in energy and nutrient intakes at breakfast were not made up for by other meals. To make matters worse, the satisfactory-energy breakfast group took more energy at dinner compared with the low-energy and average-energy breakfast group took more energy at dinner compared with the low-energy and average-energy breakfast groups in females. Among serum lipid parameters, TG was negatively correlated with energy provided at breakfast, and total cholesterol and LDL-cholesterol had a negative correlation with energy and carbohydrates provided at breakfast in males. For females TG was positively correlated with the ratio of carbohydrates to energy at breakfast but negatively correlated with the ratio of fat to energy at breakfast. These results suggest that satisfactory energy intakes at breakfast have positive effects on the adequacy of daily nutrient intake and may positively affect the serum lipid status.

  • PDF

Facial fractures and associated injuries in high- versus low-energy trauma: all are not created equal

  • Hilaire, Cameron St.;Johnson, Arianne;Loseth, Caitlin;Alipour, Hamid;Faunce, Nick;Kaminski, Stephen;Sharma, Rohit
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • Introduction: Facial fractures (FFs) occur after high- and low-energy trauma; differences in associated injuries and outcomes have not been well articulated. Objective: To compare the epidemiology, management, and outcomes of patients suffering FFs from high-energy and low-energy mechanisms. Methods: We conducted a 6-year retrospective local trauma registry analysis of adults aged 18-55 years old that suffered a FF treated at the Santa Barbara Cottage Hospital. Fracture patterns, concomitant injuries, procedures, and outcomes were compared between patients that suffered a high-energy mechanism (HEM: motor vehicle crash, bicycle crash, auto versus pedestrian, falls from height > 20 feet) and those that suffered a low-energy mechanism (LEM: assault, ground-level falls) of injury. Results: FFs occurred in 123 patients, 25 from an HEM and 98 from an LEM. Rates of Le Fort (HEM 12% vs. LEM 3%, P = 0.10), mandible (HEM 20% vs. LEM 38%, P = 0.11), midface (HEM 84% vs. LEM 67%, P = 0.14), and upper face (HEM 24% vs. LEM 13%, P = 0.217) fractures did not significantly differ between the HEM and LEM groups, nor did facial operative rates (HEM 28% vs. LEM 40%, P = 0.36). FFs after an HEM event were associated with increased Injury Severity Scores (HEM 16.8 vs. LEM 7.5, P <0.001), ICU admittance (HEM 60% vs. LEM 13.3%, P <0.001), intracranial hemorrhage (ICH) (HEM 52% vs. LEM 15%, P <0.001), cervical spine fractures (HEM 12% vs. LEM 0%, P = 0.008), truncal/lower extremity injuries (HEM 60% vs. LEM 6%, P <0.001), neurosurgical procedures for the management of ICH (HEM 54% vs. LEM 36%, P = 0.003), and decreased Glasgow Coma Score on arrival (HEM 11.7 vs. LEM 14.2, P <0.001). Conclusion: FFs after HEM events were associated with severe and multifocal injuries. FFs after LEM events were associated with ICH, concussions, and cervical spine fractures. Mechanism-based screening strategies will allow for the appropriate detection and management of injuries that occur concomitant to FFs. Type of study: Retrospective cohort study. Level of evidence: Level III.

A Performance Study on Silica Gel Adsorption Desalination System Utilizing Low Temperature Heat Sources (저온 활용을 위한 실리카겔 흡착식 담수화시스템의 성능연구)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • This work introduces a simple one-reactor adsorption desalination system that harnesses low temperature heat sources (solar energy, waste heat), which has been experimentally studied to elicit the most suitable design parameters and operating conditions. The design process of the system was divided into three parts to reflect the operating principle of desalination technology with application of adsorption processes. First, the evaporator for the vaporization of saline water was designed, then the reactor for the adsorption and release of the steam, followed by the condenser for condensation of the fresh water. The specific water yield is measured experimentally with respect to the time while controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. The present system well demonstrates the applicability of silica gel in relation to adsorption technologies that utilize low temperature heat sources ranging from 60 to $80^{\circ}C$, such as solar energy and waste heat.

Photosynthetic activity and photoinhibition in seedlings of red pepper (Capsicum annuum L.) grown from low dose $\gamma$-irradiated seeds

  • Kim, Jae-Sung;Lee, Young-Keun;Lee, Hae-Youn;Baek, Myung-Hwa;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.397-399
    • /
    • 2002
  • The seedling height, leaf width and leaf length of pepper increased in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than the control. Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. Fv/Fm was decreased with increasing illumination time by 50% after 4 hours, while Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the low dose $\gamma$ radiation increased resistance of plants to photoinhibition.

  • PDF

The Magnetic Filtering Vacuum Arc Film Deposition System and Its Applications

  • Wang, G.F.;Zhang, H.X.;Zhang, H.J.;Zhu, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.137-140
    • /
    • 1997
  • A cathodic arc with beam filter is employed for the deposition of metallic and hydrogen-free amorphous carbon films. A solenoid filter is used to prevent macropaticles and nonionized atoms from reaching the substrate. The detail transport characters of the filter are presented in the paper. With an optmum filter arrangement we are able to obtain a filter output of 18.4% of the total number of ions produced by the vacuum arc discharge. The deposited amorphous cabon thin film contains no hydrogen and a high fraction of $sp^3$ is determined by XPS. A dense Ti film deposited on H13 steel improves the corrosion resistance of the H13 steel and significant improvements of corrosion resistance were observed by implanting Ti, C in the film.

  • PDF