• 제목/요약/키워드: low dimensional materials

검색결과 433건 처리시간 0.031초

Hydroxyapatite-Zirconia Composite Thin Films Showing Improved Mechanical Properties and Bioactivity

  • Kim, Min-Seok;Ryu, Jae-Jun;Sung, Yun-Mo
    • 한국재료학회지
    • /
    • 제19권2호
    • /
    • pp.85-89
    • /
    • 2009
  • Nano-crystalline hydroxyapatite (HAp) films were formed at the Ti surface by a single-step microarc oxidation (MAO), and HAp-zirconia composite (HZC) films were obtained by subsequent chemical vapor deposition (CVD) of zirconia onto the HAp. Through the CVD process, zero- and one-dimensional zirconia nanostructures having tetragonal crystallinity (t-ZrO2) were uniformly distributed and well incorporated into the HAp crystal matrix to form nanoscale composites. In particular, (t-$ZrO_2$) was synthesized at a very low temperature. The HZC films did not show secondary phases such as tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP) at relatively high temperatures. The most likely mechanism for the formation of the t-$ZrO_2$ and the pure HAp at the low processing temperature was proposed to be the diffusion of $Ca^{2+}$ ions. The HZC films showed increasing micro-Vickers hardness values with increases in the t-$ZrO_2$ content. The morphological features and phase compositions of the HZC films showed strong dependence on the time and temperature of the CVD process. Furthermore, they showed enhanced cell proliferation compared to the $TiO_2$ and HAp films most likely due to the surface structure change.

Flattening simulations of 3D thick sheets made of fiber composite materials

  • Morioka, Kotaro;Ohtake, Yutaka;Suzuki, Hiromasa;Nagai, Yukie;Hishida, Hiroyuki;Inagaki, Koichi;Nakamura, Takeshi;Watanabe, Fumiaki
    • Journal of Computational Design and Engineering
    • /
    • 제2권2호
    • /
    • pp.88-95
    • /
    • 2015
  • Recently, fiber composite materials have been attracting attention from industry because of their remarkable material characteristics, including light weight and high stiffness. However, the costs of products composed of fiber materials remain high because of the lack of effective manufacturing and designing technologies. To improve the relevant design technology, this paper proposes a novel simulation method for deforming fiber materials. Specifically, given a 3D model with constant thickness and known fiber orientation, the proposed method simulates the deformation of a model made of thick fiber-material. The method separates a 3D sheet model into two surfaces and then flattens these surfaces into two dimensional planes by a parameterization method with involves cross vector fields. The cross vector fields are generated by propagating the given fiber orientations specified at several important points on the 3D model. Integration of the cross vector fields gives parameterization with low-stretch and low-distortion.

Time Evolution of a High-temperature GaN Epilayer Grown on a Low-temperature GaN Buffer Layer using a Low-pressure MOCVD

  • Chang, Kyung-Hwa;Cho, Sung-Il;Kwon, Myoung-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권1호
    • /
    • pp.36-41
    • /
    • 2006
  • In this paper, the time evolution of undoped GaN epilayers on a low-temperature GaN buffer layer grown on c-plane sapphire at a low pressure of 300 Torr was studied via a two-step growth condition in a horizontal MOCVD reactor. As a function of the growth time at a high-temperature, the surface morphology, structural quality, and optical and electrical properties were investigated using atomic force microscopy, high-resolution x-ray diffraction, photoluminescence, and Hall effect measurement, respectively. The root-mean-square roughness showed a drastic decrease after a certain period of surface roughening probably due to the initial island growth. The surface morphology also showed the island coalescence and the subsequent suppression of three-dimensional island nucleation. The structural quality of the GaN epilayer was improved with increasing growth time considering the symmetrical (002) and asymmetrical (102) rocking curves. The variations of room-temperature photoluminescence, background carrier concentration, and Hall mobility were measured and discussed.

Direct Growth of Graphene at Low Temperature for Future Device Applications

  • Kim, Bum Jun;Nasir, Tuqeer;Choi, Jae-Young
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.203-223
    • /
    • 2018
  • The development of two-dimensional graphene layers has recently attracted considerable attention because of its tremendous application in various research fields. Semi-metal materials have received significant attention because of their excellent biocompatibility as well as distinct physical, chemical, and mechanical properties. Taking into account the technical importance of graphene in various fields, such as complementary metal-oxide-semiconductor technology, energy-harvesting and -storage devices, biotechnology, electronics, light-emitting diodes, and wearable and flexible applications, it is considered to be a multifunctional component. In this regard, material scientists and researchers have primarily focused on two typical problems: i) direct growth and ii) low-temperature growth of graphene. In this review, we have considered only cold growth of graphene. The review is divided into five sections. Sections 1 and 2 explain the typical characteristics of graphene with a short history and the growth methods adopted, respectively. Graphene's direct growth at low temperatures on a required substrate with a well-established application is then precisely discussed in Sections 3 and 4. Finally, a summary of the review along with future challenges is described in Section 5.

Comparison between Water and N-Tetradecane as Insulation Materials through Modeling and Simulation of Heat Transfer in Packaging Box for Vaccine Shipping

  • Dao, Van-Duong;Jin, Ik-Kyu;Hur, Ho;Choi, Ho-Suk
    • 청정기술
    • /
    • 제22권1호
    • /
    • pp.45-52
    • /
    • 2016
  • This study reports on the modeling and simulation of heat transfer in packaging boxes used for vaccine shipping. Both water and n-tetradecane are used as primary insulation materials inside a multi-slab system. The one-dimensional model, which is a spherical model using a radius equivalent to the rectangular geometry of container, is applied in this study. N-tetradecane with low thermal diffusivity and proper phase transition temperature exhibits higher heat transfer resistance during both heating and cooling processes compared to water. Thus, n-tetradecane is a better candidate as an insulating material for packaging containers for vaccine shipping. Furthermore, the developed method can also become a rapid and economic tool for screening appropriate phase change materials used as insulation materials with suitable properties in logistics applications.

Carbon Dioxide Sensor Substrate for Surface-mounted Packaging

  • Han, Hyeuk-Jin;Kim, Tae Wan;Park, Kwang-Min;Park, Chong-Ook
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.159-164
    • /
    • 2015
  • Solid state electrochemical and chemo-resistive gas sensors have been used widely but can operate only under high temperature. For reducing the power consumption and optimizing the structure of the substrate of these sensors, we conducted device and circuit simulations using the COMSOL Multiphysics simulator. For assessing the effective types of substrate and heat isolation, we conducted three-dimensional thermal simulations in two separate parts; (a) by changing the shape of the contacting holes and (b) punching additional holes on the substrate. Thus, it was possible to achieve high temperature in the sensor end of the substrate while maintaining low power consumption, and temperature in the circuit.

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

국산 가래나무 간벌재활용을 위한 금속주입목재의 제조 및 특성 (Properties and Manufacturing of Low Melting Alloy Impregnated Wood Composites for using Domestic Thinned Logs of Juglans mandshurica)

  • 박계신;이화형
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.457-464
    • /
    • 2010
  • The low melting alloy impregnated wood composites with natural grain of thinned Juglans mandshurica was made and evaluated in this study. And the proper manufacturing conditions was also investigated in this study. The low melting alloy with bismuth(Bi) and tin(Sn) which are harmless to humans, was applied for this novel composites, which showed not only no defects of discoloration, delamination, swelling, and cracking, because of high dimensional stability and low thickness swelling, but also much improved performance such as high bending strength, high hardness, low abrasion, high thermal conductivity as floor materials. This study also suggested the proper impregnating condition, such as 10 minutes of the preliminary vacuum time, $187^{\circ}C$ of the heating temperature and 10 minutes of the maintaining pressure time at the pressure of 30kgf/$cm^2$. The produced composites showed 9 times higher density for small specimen, 6.6 times for actual size sample and great increase in bending strength from 102.05N/$mm^2$ to 189.47N/$mm^2$ for small size sample and to 205.4N/$mm^2$ for actual size sample, also great increase in hardness from 15.1N/$mm^2$ to 73.38N/$mm^2$ for small size sample and 64.87N/$mm^2$ for actual size sample. And the composites demonstrated great decrease in abrasion depth and in water absorption.

자동차용 고정밀 시트 리클라이너의 기어성형 공정에 관한 연구 (A Study on Gear Forming Process for High Precision Automotive Seat Recliner)

  • 강길석;박민제;장명진;김병민;고대철
    • 소성∙가공
    • /
    • 제25권4호
    • /
    • pp.268-274
    • /
    • 2016
  • In the automotive seat industry, the use of a fine blanking press is important for manufacturing of high precision products. Among them, a gear part which is a main component of an automotive seat recliner is generally manufactured by fine blanking press. However, the use of conventional mechanical press has been increasing in manufacture of gear part because of low productivity of fine blanking press. In this study, new forming process is suggested to fabricate the gear part with high precision by using mechanical press. The effect of flow restriction die (FRD) which has the restriction of blank edge on dimensional accuracy is investigated by FE-analysis. FE-analysis results for different conditions of FRD indicated that FRD has high dimensional accuracy with the lowest roll-over and the highest perpendicularity of gear part. After application to fabrication of the gear part using mechanical press, the measured dimensional characteristic was compared with the required specification of final product. In addition, results of the performance test showed that the product fabricated by developed process satisfied the required strength and durability. The results show that the suggested forming process by using FRD and mechanical press can replace fine blanking on the viewpoint of dimensional accuracy and productivity.

Novel Photocatalytic and Antibacterial Activities of Three-Dimensional (3D) Polycrystalline Anatase TiO2 Structures

  • Lee, Hyun Uk;Yun, Hyung Joong;Son, Byoungchul;Seo, Jung Hye;Kim, Hyeran;Choi, Saehae;Jeon, Cheolho;Kim, Hae Jin;Lee, Jouhahn
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.635-635
    • /
    • 2013
  • We report three-dimensional polycrystalline anatase TiO2 structures (3D a-TiO2) for environmental and bio-medical applications. The 3D a-TiO2 was synthesized without thermal treatment by the growth of rod-like polycrystals on Degussa P25 (P25) via low temperature (< $85^{\circ}C$) modified alkali hydrothermal processing. X-ray diffraction and high-resolution transmission electron microscopic results showed that the rod-like polycrystals of 3D a-TiO2 possessed the highly anatase nanostructures. The photocatalytic activity of 3D a-TiO2 was found to be 2.2 times higher than that of P25. The recyclability of the 3D a-TiO2 was found to be high: the decolorization rate was 94.8% of the initial value after fifteen cycles. In addition, 3D a-TiO2 exhibited excellent antibacterial activities for the sterilization of gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus). Even at the 10th recycled use, more than 98.4% of E. coli and S. aureus can be killed. These results indicated that 3D a-TiO2 might have utility in several promising applications such as photocatalytic water/air purification and bactericidal agents.

  • PDF