• Title/Summary/Keyword: low cyclic loading

Search Result 224, Processing Time 0.028 seconds

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

Experimental research on seismic behavior of SRC-RC transfer columns

  • Wu, Kai;Xue, Jianyang;Nan, Yang;Zhao, Hongtie
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.157-175
    • /
    • 2016
  • It was found that the lateral stiffness changes obvious at the transfer position of the section configuration from SRC to RC. This particular behavior leads to that the transfer columns become as the important elements in SRC-RC hybrid structures. A comprehensive study was conducted to investigate the seismic behavior of SRC-RC transfer columns based on a low cyclic loading test of 16 transfer columns compared with 1 RC column. Test results shows three failure modes for transfer columns, which are shear failure, bond failure and bend failure. Its seismic behavior was completely analyzed about the failure mode, hysteretic and skeleton curves, bearing capacity deformation ability, stiffness degradation and energy dissipation. It is further determined that displacement ductility coefficient of transfer columns changes from 1.97 to 5.99. The stiffness of transfer columns are at the interval of SRC and RC, and hence transfer columns can play the role of transition from SRC to RC. All specimens show similar discipline of stiffness degradation and the process can be divided into three parts. Some specimens of transfer column lose bearing capacity swiftly after shear cracking and showed weak energy dissipation ability, but the others show better ability of energy dissipation than RC column.

Degradation Prediction of Piezo-Composite Actuator under Cyclic Electric Field (반복하중을 받는 압전 복합재료 작동기의 피로 특성)

  • Setiawan Hery;Goo Nam Seo;Yoon Kwang Joon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.286-289
    • /
    • 2004
  • This paper presents the fatigue characteristics of LIPCA (LIghtweight Piezo-Composite Actuator) device system. The LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced lightweight composite layers. Typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. The advantages of the LIPCA design are weight reduction by using the lightweight fiber reinforced plastic layers without compromising the generation of high force and large displacement and design flexibility by selecting the fiber direction and the size of prepreg layers. To predict the degradation of actuation performance of LIPCA due to fatigue, the cyclic electric loading tests using PZT specimens were performed and the strain for a given excitation voltage was measured during the test. The results from the PZT fatigue test were implemented into CLPT (Classical Laminated Plate Theory) model to predict the degradation of LIPCA's actuation displacement. The fatigue characteristic of PZT was measured using a test system composed of a supporting jig, a high voltage power supplier, data acquisition board, PC, and evaluated.

  • PDF

Experimental and numerical assessment of beam-column connection in steel moment-resisting frames with built-up double-I column

  • Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Ziarati, Seyed Mohsen;Mehrpour, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.315-328
    • /
    • 2018
  • Built-up Double-I (BD-I) columns consist of two hot rolled IPE sections and two cover plates which are welded by fillet welds. In Iran, this type of column is commonly used in braced frames with simple connections and sometimes in low-rise Moment Resisting Frames (MRF) with Welded Flange Plate (WFP) beam-column detailing. To evaluate the seismic performance of WFP connection of I-beam to BD-I column, traditional and modified exterior MRF connections were tested subjected to cyclic prescribed loading of AISC. Test results indicate that the traditional connection does not achieve the intended behavior while the modified connection can moderately meet the requirements of MRF connection. The numerical models of the connections were developed in ABAQUS finite element software and validated with the test results. For this purpose, moment-rotation curves and failure modes of the tested connections were compared with the simulation results. Moreover to avoid improper failure modes, some improvements of the connections were evaluated through a numerical study.

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.

Performance evaluation and hysteretic modeling of low rise reinforced concrete shear walls

  • Nagender, T.;Parulekar, Y.M.;Rao, G. Appa
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.41-54
    • /
    • 2019
  • Reinforced Concrete (RC) shear walls are widely used in Nuclear power plants as effective lateral force resisting elements of the structure and these may experience nonlinear behavior for higher earthquake demand. Short shear walls of aspect ratio less than 1.5 generally experience combined shear flexure interaction. This paper presents the results of the displacement-controlled experiments performed on six RC short shear walls with varying aspect ratios (1, 1.25 and 1.5) for monotonic and reversed quasi-static cyclic loading. Simulation of the shear walls is then carried out by Finite element modeling and also by macro modeling considering the coupled shear and flexure behaviour. The shear response is estimated by softened truss theory using the concrete model given by Vecchio and Collins (1994) with a modification in softening part of the model and flexure response is estimated using moment curvature relationship. The accuracy of modeling is validated by comparing the simulated response with experimental one. Moreover, based on the experimental work a multi-linear hysteretic model is proposed for short shear walls. Finally ultimate load, drift, ductility, stiffness reduction and failure pattern of the shear walls are studied in details and hysteretic energy dissipation along with damage index are evaluated.

Hysteretic performance of the all-steel buckling-restrained brace with LY315 steel core

  • Wei, Xuan;Yang, Lu;Chen, Yohchia Frank;Wang, Meng
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.899-912
    • /
    • 2022
  • To study the seismic performance of the all-steel buckling-restrained brace (BRB) using the novel soft steel LY315 for core member, a total of three identical BRBs were designed and a series of experimental and numerical studies were conducted. First, monotonic and cyclic loading tests were carried out to obtain the mechanical properties of LY315 steel. In addition, the parameters of the Chaboche model were calibrated based on the test results and then verified using ABAQUS. Second, three BRB specimens were tested under cyclic loads to investigate the seismic performance. The failure modes of all the specimens were identified and discussed. The test results indicate that the BRBs exhibit excellent energy dissipation capacity, good ductility, and excellent low-cycle fatigue performance. Then, a finite element (FE) model was established and verified with the test results. Furthermore, a parametric study was performed to further investigate the effects of gap size, restraining ratio, slenderness ratio of the yielding segment, and material properties of the core member on the load capacity and energy dissipation capacity of BRBs.

Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model (비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석)

  • Kim, Yooil;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

Cyclic Loading Test for Shear Strength of Low-rise RC Walls with Grade 550 MPa Bars (550 MPa 급 철근을 적용한 낮은 철근콘크리트 벽체의 전단강도를 위한 반복하중 실험)

  • Park, Hong-Gun;Lee, Jae-Hoon;Shin, Hyun-Mock;Baek, Jang-Woon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the construction of nuclear power plants using massive walls, the use of high-strength re-bars for shear design is necessary to enhance the constructability and economy. In this study, low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars were tested under cyclic loading to investigate the shear capacity and deformation capacity. The test parameters were the grade of horizontal re-bars (550 MPa, 420 MPa), strength of concrete compressive strength (46 MPa, 70 MPa), horizontal/vertical reinforcement ratio, use of lateral confinement hoops, shape of cross section, and failure modes (shear failure before or after flexural yielding). The test results were compared with those of walls with grade 420 MPa bars and predicted strength by current design codes. The results showed that the shear strength of the walls with 550 MPa bars was comparable to that of the walls with 420 MPa bars though the safe margin slightly decreased. ACI 349 provides underestimated shear strength for the walls with 550 MPa bars. In case of the wall with flexural yielding, a large deformation capacity was achieved. This result indicates that the ACI 349 provisions can be safely applied to seismic design of the low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars.

Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths

  • Xing, G.H.;Wu, T.;Niu, D.T.;Liu, X.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.429-449
    • /
    • 2013
  • Current Design Codes for Reinforced Concrete (RC) interior beam-column joints are based on limited experimental studies on the seismic behavior of eccentric joints. To supplement existing information, an experimental study was conducted that focused on the effect of eccentricity of the deeper beams with respect to the shallow beams. A total of eight one-third scale interior joints with beams of different depths were subjected to reverse cyclic loading. The primary variables in the test specimens were the amount of joint transverse reinforcement and the cross section of the shallow beams. The overall performance of each test assembly was found to be unsatisfactory in terms of joint shear strength, stiffness, energy dissipation and shear deformation. The results indicated that the vertical eccentricity of spandrel beams in this type of joint led to lower capacity in joint shear strength and severe damage of concrete in the joint core. Increasing the joint shear reinforcement was not effective to alter the failure mode from joint shear failure to beam yielding which is favorable for earthquake resistance design, whereas it was effective to reduce the crack width at the small loading stages. Based on the observed behavior, the shear stress of the joint core was suggested to be kept as low as possible for a safe and practical design of this type of joint.