• Title/Summary/Keyword: low consistency refining

Search Result 4, Processing Time 0.021 seconds

Effect of Pulp Properties on the Power Consumption in Low Consistency Refining

  • LIU, Huan;DONG, Jixian;QI, Kai;GUO, Xiya;YAN, Ying;QIAO, Lijie;DUAN, Chuanwu;ZHAO, Zhiming
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.869-877
    • /
    • 2020
  • The power consumption in the low consistency (LC) refining is an important indicator for the optimal control of the process and it is composed of the net power and the no-load power. The refining efficiency and process characterization of LC refining are directly affected by power consumption. In this paper, the effect of pulp consistency and average fiber length on the power consumption and refining efficiency were studied through the LC refining trials conducted by an experimental disc refiner. It is found that the curve of power-gap clearance can be divided into constant power section, power reduction section, and power increase section. And the no-load power and the adjustable domain of loading applied by the refining plates will increase as the increase of pulp consistency, while the increase of net power is larger than that of no-load power which makes the increasing of refining efficiency. Meanwhile, the adjustable domain of loading applied by the refining plates can be slightly improved by increasing the average fiber length, but its effect on the no-load power in the LC refining process can be neglected. The study of power consumption in LC refining is of positive significance for the proper selection of pulp properties in LC refining, in-depth exploration of refining mechanism, and energy consumption reduction in refining.

Effect of Refining Conditions and Grammage on the Bending Stiffness of Linerboard (고해 조건과 평량이 라이너 판지의 휨강성에 미치는 영향)

  • Won Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.44-51
    • /
    • 2004
  • The effect of refining conditions and grammage on the stiffness of linerboard was investigated. The correlations between Taber stiffness and resonance stiffness were very low due to the different measuring principle. The refining conditions did not affect sig nificantly on both Taber and resonance stiffness estimated here. This means that it is strongly recommended to find and apply the refining conditions which can reduce specific energy consumption. Taber stiffness showed very high correlation for the thickness and elastic modulus of linerboard, while the resonance stiffness showed much lower correlation. Effective thicknesses for Taber stiffness were very well fitted with measured thickness, while those for resonance stiffness depended on the grammage of linerboard.

Effect of Combined Refining Plates with Different Bar Angles on Paper Properties during Mixed Pulp Refining

  • GUO, Xiya;DONG, Jixian;LIU, Huan;DUAN, Chuanwu;YANG, Ruifan;QI, Kai
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.581-590
    • /
    • 2020
  • Pulp refining is the major way to alter the properties of fibers and formed paper. Different combinations of the bar profile of the rotor and stator during low consistency refining processes directly affect the properties of the paper. In this study, a mixture of softwood and hardwood pulp was refined by varying the bar angle of the stator while that of the rotor is fixed at 0º. The pulp samples were collected at different refining times. Then, the pulp and paper properties, such as beating degree, fiber external fibrillation, and tensile and tear indexes were measured to explore the effects of the combined refining plates at different bar angles on paper properties. The results of the experiment show that the combined refining plate of 0º and 5º recorded the most significant improvement in the pulp beating degree and fiber external fibrillation. This consequently increased the fiber bonding area, which in turn, improved both the tensile and the tear indexes of the paper. Also, the influence of the combined refining plates with a larger bar angle on the paper properties was weaker compared to that of smaller angles. This study not only provides ideas for the bar profile design but also improves the optimal selection of refining plates.

Quantitative Characterization of Internal Fibrillation of Pulp Fiber

  • Won, Jong-Myoung;Lee, Jae-Hun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.1-7
    • /
    • 2007
  • Internal fibrillation of pulp fiber is an important factor affecting paper properties. Internal fibrillation of pulp fiber is usually introduced with several kinds of modifications of fiber by the mechanical treatment such as refining, high shear and/or high consistency mixing, etc. Unfortunately there are no standardized methods that can characterize the extent of internal fibrillation and its contribution on the paper properties. The purpose of this study is to try and find the potential methods that can characterize the internal fibrillation of pulp fiber quantitatively. Softwood bleached kraft pulp was treated with Hobart mixer to introduce the internal fibrillation without the significant fiber damage and external fibrillation. The extent of internal fibrillation was increased with the increase of mechanical treatment consistency. Several fiber properties were measured to find the potential means that could characterize and quantity the internal fibrillation. Laminated area could not be used as a means for quantifying the internal fibrillation because of the effect of swelling and the different internal fibrillation behavior at different mechanical treatment consistency. Micro and macro internal fibrillation models were proposed for describing the different behavior for the mechanical treatment at low and high consistencies of pulp. The Internal fibrillation showed good correlation with swelling of fiber wall. This trend was confirmed through the measurement of wall thickness and/or cross section area of fiber. Therefore the internal fibrillation possibly can be described as the indices indicating the change of wall thickness and/or cross section area.