• Title/Summary/Keyword: low conductivity

Search Result 1,732, Processing Time 0.036 seconds

Low-Noise Detector Design for Measuring the Electric Conductivity of Liquids (액체의 전기 전도도 측정을 위한 저잡음 검출기 설계)

  • Kim, Nam Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.287-292
    • /
    • 2012
  • In this paper, design of a conductivity detector using a synchronous demodulation is presented to detect the electric conductivity of liquids with low noise. For the purpose, the detector is constructed by the combination of a carrier generator, conductivity detecting cell, and synchronous demodulator. The signal-to-noise ratio(SNR) of the detector is improved by adjusting the frequency bandwidth of the demodulator, whereby infinitesimal conductivity signals can easily be measured under various noise environments. As an application example, a conductivity detector, which is applied to the air monitoring in a fabrication process of semiconductor chips, is designed using the synchronous demodulation. The validity of the design technique is verified by experiments. Since experimental results are shown to approach the design performance of the detector, the synchronous demodulation proves to be useful to the design of a conductivity detector for measuring the infinitesimal electric conductivity of liquids.

High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds

  • Lin, Chan-Chieh;Ginting, Dianta;Kim, Gareoung;Ahn, Kyunghan;Rhyee, Jong-Soo
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1534-1539
    • /
    • 2018
  • SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity $0.23W\;m^{-1}\;K^{-1}$. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped $K_xSn_{1-x}Se$ (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the $K_{0.001}Sn_{0.999}Se$ sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.

The Influence of Electron Beam Irradiation due to Conductivity in the Low Density Polyethylene (저밀도 폴리에틸렌의 도전율에 미치는 전자선 조사의 영향)

  • 조경순;김이두;신현택;이수원;이종필;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.191-194
    • /
    • 1998
  • In this paper, the physical and conductivity properties due to the electron beam irradiation for low density polyethylene using insulating materials of the distribution cable and ultra-high voltage cable are studied. The specimens of the low density polyethylene of thickness 100[$\mu\textrm{m}$] irradiated as each 1 [Mrad], 2[Mrad], 4[Mrad], 8[Mrad], 16[Mrad] and virgin are used in this experiment. In order to measure the conductivity properties, the micro electrometer is used, the range of temperature and app1ying voltage are 20 to 120[$^{\circ}C$], from 100 to 1000[V] respectively So. as a result of the conductivity properties, it is confirmed that the conductivity is increased nearly to 50[$^{\circ}C$], and is not changed until the crystalline melting point from the temperature over 60[$^{\circ}C$] because of the defects of morphology and the formation of many trap centers by means of electron beam irradiation

  • PDF

Heat transfer enhancement of metal hydride $(Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$ for hydrogen storage (수소저장용 금속수소화물$(Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$의 전열촉진)

  • Bae Sang-Chul;Yang Yang;Masanori Monde
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.75-80
    • /
    • 2006
  • The effective thermal conductivities of $Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2}$ [TL-492] with hydrogen and helium have been examined. Experiment results show that pressure has great influence on effective thermal conductivity in low pressure range [below 0.5 MPa]. And that influence decreases rapidly with increase of gas pressure. The reason is at low pressure, the mean free path of gas becomes greater than effective thickness of gas film which is important to the heat transfer mechanism in this research. And, carbon fibers have been used to try to enhance the poor thermal conductivity of TL-492. Three types of carbon fibers and three mass fractions have been examined and compared. Naturally, the highest effective thermal conductivity has been reached with carbon fiber which has highest thermal conductivity, and highest mass fraction. This method has acquired 4.33 times higher thermal conductivity than pure metal hydrides with quite low quantity of additives, only 0.99 wt% of carbon fiber. This is a good result comparing to other method which can reach higher effective thermal conductivity but needs much higher mass fraction of additives too.

  • PDF

Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix

  • Nam, I.W.;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.427-438
    • /
    • 2015
  • The present work proposes a new image analysis method for the evaluation of the multi-walled carbon nanotube (MWNT) distribution in a cement matrix. In this method, white cement was used instead of ordinary Portland cement with MWNT in an effort to differentiate MWNT from the cement matrix. In addition, MWNT-embedded cement composites were fabricated under different flows of fresh composite mixtures, incorporating a constant MWNT content (0.6 wt%) to verify correlation between the MWNT distribution and flow. The image analysis demonstrated that the MWNT distribution was significantly enhanced in the composites fabricated under a low flow condition, and DC conductivity results revealed the dramatic increase in the conductivity of the composites fabricated under the same condition, which supported the image analysis results. The composites were also prepared under the low flow condition (114 mm < flow < 126 mm), incorporating various MWNT contents. The image analysis of the composites revealed an increase in the planar occupation ratio of MWNT, and DC conductivity results exhibited dramatic increase in the conductivity (percolation phenomena) as the MWNT content increased. The image analysis and DC conductivity results indicated that fabrication of the composites under the low flow condition was an effective way to enhance the MWNT distribution.

Thermoelastic analysis for a slab made of a thermal diode-like material

  • Darwish, Feras H.;Al-Nimr, Mohammad A.;Hatamleh, Mohammad I.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.645-659
    • /
    • 2015
  • This research investigates the thermoelastic transient behavior of a thermally loaded slab made of a thermal diode-like material which has two directional thermal conductivity values (low and high). Finite difference analysis is used to obtain the elastic response of the slab based on the temperature solutions. It is found that the rate of heat transfer through the thickness of the slab decreases with reducing the ratio between the low and high thermal conductivity values (R). In addition, reducing R makes the slab less responsive to the thermal load when heated from the direction associated with the low thermal conductivity value.

Conductivity measurements at low oxygen partial pressure of the stabilized $ZrO_{2}$ ceramics prepared by SHS

  • Soh, Dea-Wha;Korobova, Natalya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.451-454
    • /
    • 2001
  • The ionic conductivity of cubic solid solutions in the system $Y_{2}O_{3}-ZrO_{2}$ prepared by SHS was examined. Conductivity-temperature data obtained at $1000^{\circ}C$ in atmosphere of low oxygen partial pressure ($10^{-40}$ atm) for $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions indicated that these materials could be reduced, the degree of reduction being related to the measuring electric field. At low impressed fields no reduction was observed. Thus, these conductivity data give a transference number for the oxygen ion in $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions greater than 0.99.

  • PDF

Low-Temperature Electrical Conductivity of Sintered Body in the Systems $CaO-ZrO_2$ ($CaO-ZrO_2$계 소결체의 저열 전기부도제에 관한 연구)

  • 박금철;최영섭
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.2
    • /
    • pp.135-142
    • /
    • 1984
  • The electrical conductivity of compositions in the system $CaO-ZrO_2$ has been measured by 2-probe tech-nique in the temperature range 350~75$0^{\circ}C$. The composition of maximum conductivity in this system is within the cubic solid-solution region close to low-calcia cubic solid-solution phase boundary. The results are as follows : 1) The maximum conductivity was found 13mol CaO in zirconia. 2) As the CaO content was increased from 13 to 21 mol% the electrical conductivity decreased for any given temperature and the activation energy increased. 3) As the firing temperature and soaking time was increased the electrical conductivity increased and activation energy decreased.

  • PDF

A Low- Viscousity, Highly Thermally Conductive Epoxy Molding Compound (EMC)

  • Bae, Jong-Woo;Kim, Won-Ho;Hwang, Seung-Chul;Choe, Young-Sun;Lee, Sang-Hyun
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • Advanced epoxy molding compounds (EMCs) should be considered to alleviate the thermal stress problems caused by low thermal conductivity and high elastic modulus of an EMC and by the mismatch of the coefficient of thermal expansion (CTE) between an EMC and the Si-wafer. Though A1N has some advantages, such as high thermal conductivity and mechanical strength, an A1N-filled EMC could not be applied to commercial products because of its low fluidity and high modules. To solve this problem, we used 2-$\mu\textrm{m}$ fused silica, which has low porosity and spherical shape, as a small size filler in the binary mixture of fillers. When the composition of the silica in the binary filler system reached 0.3, the fluidity of EMC was improved more than twofold and the mechanical strength was improved 1.5 times, relative to the 23-$\mu\textrm{m}$ A1N-filled EMC. In addition, the values of the elastic modules and the dielectric constant were reduced to 90%, although the thermal conductivity of EMC was reduced from 4.3 to 2.5 W/m-K, when compared with the 23-$\mu\textrm{m}$ A1N-filled EMC. Thus, the A1N/silica (7/3)-filled EMC effectively meets the requirements of an advanced electronic packaging material for commercial products, such as high thermal conductivity (more than 2 W/m-K), high fluidity, low elastic modules, low dielectric constant, and low CTE.

Conductivity measurements at lwo oxygen partial pressure of the stabilized ZrO$_2$ ceramics preared by SHS

  • Soh, Deawha;Korobova, Natalya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.451-454
    • /
    • 2001
  • The ionic conductivity of cubic solid solutions in the system Y$_2$O$_3$-ZrO$_2$ prepared by SHS was examined. Conductivity-temperature data obtained at 1000$^{\circ}C$ in atmosphere of low oxygen partial pressure (10$\^$-40/ atm) for Y$_2$O$_3$-ZrO$_2$ cubic solid solutions indicated that these materials could be reduced, the degree of reduction being related to the measuring electric field. At low impressed fields no reduction was observed. Thus, these conductivity data give a transference number for the oxygen ion in Y$_2$O$_3$-ZrO$_2$ cubic solid solutions greater than 0.99.

  • PDF