• Title/Summary/Keyword: low buildings

Search Result 1,081, Processing Time 0.027 seconds

A study on the low-carbon planning element and carbon reduction effect in public buildings -Focused on Cheongju city- (공공건축물의 저탄소 계획요소의 활용 및 탄소감축 효과분석 -충북 청주시 사례를 중심으로-)

  • Kim, Young-Hwan;Eo, Sang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3043-3051
    • /
    • 2013
  • As abnormal climate phenomena frequently happen due to the after-effect of the global warming, all nations suggest climate change response policies in many different fields to prevent global warming by reducing greenhouse gas. Especially, these days, the realization that the greenhouse gas from city buildings should be decreased is growing, and it is because that buildings are accounted for a quarter of national greenhouse gas emission and it is more than half the percentage of emissions within the city. Accordingly, Korean government sees the need to take an initiating role to fulfill low-carbon green policies and promotion strategies in the public sector, and wants to facilitate greenhouse gas reduction in the private sector as well. In this background, this study tries to examine the low-carbon planning element in public buildings and figure out the amount of carbon reduction and economic analysis centering Cheongju city as case study. Lastly, we propose some suggestion for low-carbon and greening of public buildings.

A proposed technique for determining aerodynamic pressures on residential homes

  • Fu, Tuan-Chun;Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Yeo, DongHun;Simiu, Emil
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.27-41
    • /
    • 2012
  • Wind loads on low-rise buildings in general and residential homes in particular can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. The imperfect spatial coherence of the low frequency velocity fluctuations results in reductions of the overall wind effects with respect to the case of perfectly coherent flows. For large buildings those reductions are significant. However, for buildings with sufficiently small dimensions (e.g., residential homes) the reductions are relatively small. A technique is proposed for simulating the effect of low-frequency flow fluctuations on such buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. Experimental results are presented that validate the proposed technique. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories. In addition, the technique allows the use of considerably larger model scales than are possible in conventional testing. This makes it possible to model architectural details, and improves Reynolds number similarity. The technique is applicable to wind tunnels and large scale open jet facilities, and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. The work reported in this paper is a first step in developing the proposed technique. Additional tests are planned to further refine the technique and test the range of its applicability.

Developing the Construction Guideline for ZEB Based on Air-tightness of Public Buildings in Korea (국내 비주거용 건물의 기밀성능 측정 결과를 통한 기밀 시공 가이드라인 개발)

  • Bae, Minjung;Choi, Gyeongseok
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.69-74
    • /
    • 2020
  • Since the design Standard for Energy Conservation in Building was implemented in 2008 for the first time, building elements such as window and door should satisfy the minimum criteria to apply for a building. Though its regulation does not cover the whole building yet, recent demand to reduce energy consumption in building sector grows rapidly year by year and also draws a lot of interest to ensure the whole building level. For example, a Zero energy building, one of low-energy buildings, requires a customized solution to resolve the air leakage issue to meet the standards in achieving the high level of air tightness. In this study, six non-residential buildings were tested by fan pressurization method to observe the air tightness of whole building to suggest the construction guideline for air tightness of low-energy building. Five out of six tested buildings showed 0.27 to 1.16 h-1 of number of air changes except one community center. These buildings were carefully constructed not only for building planning but also for parts where there was a concern of air leakage, thereby securing high levels of air-tightness. The construction skills were developed as a checklist to manage and supervise the construction site. It is our suggestion to use this checklist at construction sites for ZEB with the high level of air-tightness.

Dynamic Experiment to Evaluate Response Characteristics of High-Rise Buildings on Period Characteristics of Seismic Waves (지진파 주기특성에 따른 고층건축물의 응답특성 평가를 위한 동적실험)

  • Oh, Sang-Hoon;Kim, Ju-Chan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.127-133
    • /
    • 2019
  • Damage to high-rise buildings caused by earthquakes is less frequency due to small distribution of high-rise buildings and low transmissibility of seismic motion to high-rise buildings. However, demand for high-rise buildings is increasing for development of construction technology and efficient land use. In addition, if high-rise buildings are constructed on soft ground such as landfill, transmissibility of seismic motion due to long-periodization of seismic waves is likely to increase. Thus, with development of technology, buildings are required to expand range of seismic design such as safety for long-period seismic waves. Therefore, in this study, dynamic experiments were performed to evaluate response characteristics of high-rise buildings according to period characteristics of seismicwaves and time history analysis was performed to verify them.

An engineering-based assessment methodology on the loss of residential buildings under wind hazard

  • Li, Mingxin;Wang, Guoxin
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • The loss prediction and assessment during extreme events such as wind hazards is always crucial for the group low-rise residential buildings. This paper analyses the effect of variation in building density on wind-induced loss for low-rise buildings and proposes a loss assessment method consequently. It is based on the damage matrices of the building envelope structures and the main load-bearing structure, which includes the influence factors such as structure type, preservation degree, building density, and interaction between different envelope components. Accordingly, based on field investigation and engineering experience, this study establishes a relevant building direct economic loss assessment model. Finally, the authors develop the Typhoon Disaster Management System to apply this loss assessment methodology to practice.

The measurement study on the airtightness of dwellings based on the passive design (패시브 디자인을 적용한 주택의 기밀성에 관한 실측 사례 연구)

  • Lee, Tae-Goo;Yun, Doo-Young
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2013
  • Today, the world energy consumption in buildings occupies more than 30%. In our country, the energy consumption in buildings also occupies 25% of the entire national energy consumption. With the increasing demand of energy saving in architectural fields, there is a more interest in low-energy construction. For these low-energy housings, our country is planning to apply the energy-saving design standards at the level of passive houses in 2017. However, there is still a limitation in energy saving only with the standards on the performance of envelope in buildings. This means that unless a building is airtight even though it was well-insulated, cooling and heating energy consumption will increase due to the infiltration and leakage. Therefore, this study aims to make a comparative analysis of airtight performance by conducting a blower door test on the housings applied with passive designs, analyze the reasons why most houses fall short of the airtightness standards, and complement the airtightness problems in the inadequate parts of the buildings in order to save building energy.

The Dynamic Characteristics for Low-rise Reinforced Concrete Buildings by Vibration Measurements (진동계측에 의한 저층 철근콘크리트조 건물의 동적특성)

  • Kang, Dong-Gyun;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.47-55
    • /
    • 2003
  • This paper is concerned with the dynamic characteristics of buildings, especially with the measurement of the natural frequencies(natural periods) and the damping. Process of ambient vibration and synchronized human excitation tests for natural period and damping are given. Data from measurement on 16 reinforced concrete buildings in Seoul and Seoul national university of technology are given. 16 Low-rise Reinforced concrete buildings are measured for ambient vibration to obtain the vibrations characteristics. The natural periods obtained by ambient vibration measurements are compared with those of forecast model suggested by standards and foreign researchers. The natural periods show a clear dependence on building height. On the other hand, the damping ration scatter under the influence of various factors, for example, building height and natural frequency.

  • PDF

Investigation of Typhoon Wind Speed Records on Top of a Group of Buildings

  • Liu, Min;Hui, Yi;Li, Zhengnong;Yuan, Ding
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.313-324
    • /
    • 2019
  • This paper presents the analysis of wind speeds data measured on top of three neighboring high-rise buildings close to a beach in Xiamen city, China, during Typhoon "Usagi" 2013. Wind tunnel simulation was carried out to validate the field measurement results. Turbulence intensity, turbulence integral scale, power spectrum and cross correlation of recorded wind speed were studied in details. The low frequency trend component of the typhoon speed was also discussed. The field measurement results show turbulence intensity has strong dependence to the wind speed, upwind terrain and even the relative location to the Typhoon center. The low frequency fluctuation could severely affect the characteristics of wind. Cross correlation of the measured wind speeds on different buildings also showed some dependence on the upwind terrain roughness. After typhoon made landfall, the spatial correlation of wind speeds became weak with the coherence attenuating quickly in frequency domain.

A Study on a Permissible Range of the Indicators to Manage Streetscapes by Dynamic Simulation - Focusing on Shape and Layout of Buildings - (동적 시뮬레이션에 의한 도시가로경관 관리지표의 허용범위 연구 - 건축물 형태 및 배치를 중심으로 -)

  • Kim, Doo-Wun;Byeon, Jae-Sang;Im, Seung-Bin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.74-83
    • /
    • 2008
  • As urban residents' standard of living has recently risen, efforts to improve urban landscapes have increased. It is very important to manage streetscapes to improve the urban landscape because they are one of the essential elements in city construction and urban landscaping. This study focuses on the indicators that manage streetscapes more accurately and realistically. To achieve this purpose, this study used dynamic simulations considering shape and layout of buildings, the primary factors in streetscapes. This study can be summarized as follows: 1. Two indicators to manage streetscape were investigated in previous studies: one to increase visual openness and the other to reduce visual overstimulation. These indicators had high correlation with scenic beauty. Therefore, increasing openness and reducing overstimulation are essential to improve streetscapes. 2. Two household tower type buildings should be arranged along roadsides to increase openness and scenic beauty. However, low tower buildings with two household are not suitable along roadsides because they create monotony and intervals are needed between buildings. 3. To increase openness, the angled arrangement of buildings is suggested $75^{\circ}{\sim}90^{\circ}(105^{\circ}{\sim}135^{\circ})$ for low buildings, $30^{\circ}{\sim}45^{\circ}(135^{\circ}{\sim}150^{\circ})$ for mid-sized buildings, and $75^{\circ}{\sim}90^{\circ}(105^{\circ}{\sim}135^{\circ})$ for high buildings. 4. To reduce overstimulation, the height and setback control regulations should be at an angle of less than $45^{\circ}$. This study suggests more accurate management guidelines by organizing the indicators that could effectively manage streetscapes and by overcoming limitations of reality shown in a static simulation.

Monitoring of wind effects on an instrumented low-rise building during severe tropical storm

  • Li, Q.S.;Hu, S.Y.
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.469-488
    • /
    • 2015
  • A full-scale instrumented low-rise building with gable roof was built at a coastal site with a high incidence of tropical cyclones for monitoring of wind effects on the building during windstorms. This paper presents the field measurements of the wind velocity field around and the wind-induced pressures on the low-rise building during the passage of severe tropical storm Soudelor. Near-ground wind characteristics such as wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and wind velocity spectra were investigated. The wind-induced pressures on the roof of the building were analyzed and discussed. The results revealed that the eave and ridge edges on the roof were subjected to the most severe suction pressures under quartering winds. These suction pressures showed obvious non-Gaussian behavior. The measured results were compared with the provisions of ASCE 7-10 to assess the suitability of the code of practice for the wind-resistant design of low-rise buildings under tropical cyclones. The field study aims to provide useful information that can enhance our understanding of the extreme wind effects on low-rise buildings in an effort to reduce tropical cyclone wind damages to residential buildings.