• Title/Summary/Keyword: low Q resonator

Search Result 72, Processing Time 0.023 seconds

A 2012 Size Multilayer LTCC BPE for 2.4 GHz Band (2.4 GHz 대역 2012사이즈 적층 LTCC 대역통과 필터의 설계 및 제작)

  • 이영신;송희석;박종철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • A very small size 2.4 GHz ISM band BPF(Band Pass Filter) is realized using LTCC Multi-layer technology. Proposed design method enables to achieve BPF size $2.0\times1.2\times0.8mm^3$. A $lambda/4$ resonator with shunt-to-ground loaded capacitor is used to shorten resonator length, achieving higher quality factor. Also this resonator enables BPF to improve out-of-band rejection. Coupling coefficients between coupled strip-line resonators and external quality factor (Qe) of a resonator are derived and applied to the filter design. The measured results show good agreement with simulated data.

  • PDF

X-band Low Phase Noise VCO Using Dual Coupled Spiral Resonator (Dual Coupled Spiral 공진기를 이용한 X-대역 저위상 잡음 전압 제어 발진기)

  • Kim, Yang-Hyun;Seo, Chul-Hun;Ha, Sung-Jae;Lee, Bok-Hyung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.56-60
    • /
    • 2009
  • In this paper, a novel voltage controlled oscillator (VCO) has been presented by using the microstrip square multiple spiral resonator for reducing the phase noise of VCO. The microstrip multiple square resonator has the large coupling coefficient value, which makes a high Q value, and has reduced phase noise of VCO. The VCO with 1.8 V power supply has phase noise of -115.0~-117.34 dBc/Hz @100 kHz in the tuning range, 8.935~9.4 GHz. When it has been compared with microstrip square multiple spiral resonator and coventional spiral resonator, the reduced Q value has been -32.7 dB and -57.6 dB respectively. This low phase noise VCO could ve available to a VCO in X-band.

Design and Fabrication of a X-band Voltage Control Dielectric Resonator Oscillator with The Low Phase Noise (낮은 위상잡음을 갖는 X-band 전압제어 유전체 공진형 발진기의 설계 및 제작)

  • 박창현;최병하
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.5
    • /
    • pp.69-76
    • /
    • 2004
  • In this paper, a VCDRO (Voltage Control Dielectric Resonator Oscillator) with low phase noise for X-band application has been designed and fabricated. A low noise and low flicker noise MESFET and a high Q dielectric resonator were selected to obtain good phase noise Performance. Also, a varactor diode having high Q, qualify factor was used to reduce the loading effects and a big Gamma of diode was chosen for linearity of frequency over voltage tuning range. The fabricated circuits was simulated with circuit design tools, ADS to provide the optimum performances. As the measured results of fabricated oscillator, the output power was 5.8 ㏈m at center frequency 12.05㎓ and harmonic suppression -30㏈c, phase noise -114 ㏈c at 100 KHz offset frequency, respectively, and the frequency tuning range as the function of valtage applied to varactor diode was 15.2 MHz and its power variation with frequency was 0.2 ㏈. This oscillator could be available to a local oscillator in X-band.

Monolithic film Bulk Acoustic Wave Resonator using SOI Wafer (SOI 웨이퍼를 이용한 압전박막공진기 제작)

  • 김인태;김남수;박윤권;이시형;이전국;주병권;이윤희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1039-1044
    • /
    • 2002
  • Film Bulk Acoustic Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents an MMIC compatible suspended FBAR using SOI micromachining. It is possible to make a single crystal silicon membrane using a SOI wafer In fabricating active devices, SOI wafer offers advantage which removes the substrate loss. FBAR was made on the 12㎛ silicon membrane. Electrode and Piezoelectric materials were deposited by RF magnetron sputter. The maximum resonance frequency of FBAR was shown at 2.5GHz range. The reflection loss, K$^2$$\_$eff/, Q$\_$serise/ and Q$\_$parallel/ in that frequency were 1.5dB, 2.29%, 220 and 160, respectively.

Film Bulk Acoustic Wave Resonator using surface micromachining (표면 마이크로머시닝을 이용한 압전 박막 공진기 제작)

  • 김인태;박은권;이시형;이수현;이윤희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.156-159
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be fabricated as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible Suspended FBAR using surface micromachining. It is possible to make Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$membrane by using surface micromachining and its good effect is to remove the substrate silicon loss. FBAR was made on 2$\mu\textrm{m}$ multi-layered membrane using CVD process. According to our result, Fabricated film bulk acoustic wave resonator has two adventages. First, in the respect of device Process, our Process of the resonator using surface micromachining is very simple better than that of resonator using bull micromachining. Second, because of using the multiple layer, thermal expansion coefficient is compensated, so, the stress of thin film is reduced.

  • PDF

Low Phase Noise VCO Using Complimentary Bifilar Archimedean Spiral Resonator(CBASR) (Complimentary Bifilar Archimedean Spiral Resonator(CBASR)를 이용한 저위상 잡음 전압 제어 발진기)

  • Lee, Hun-Sung;Yoon, Won-Sang;Lee, Kyoung-Ju;Han, Sang-Min;Pyo, Seong-Min;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.627-634
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator(VCO) using the complimentary bifilar archimedean spiral resonator(CBASR) is presented for reducing the phase noise characteristic. A CBASR has compact dimension, a sharp skirt characteristic in stopband, a low insertion loss in passband, and a large coupling coefficient value, which makes a high Q value and improve the phase noise of VCO. The proposed VCO has the oscillation frequency of 2.396~2.502 GHz in the tuning voltage of 0~5 V, the output power of 7.5 dBm and phase noise of -119.16~-120.2 dBc/㎐ at the offset frequency of 100 kHz in tuning range.

K-Band Low Phase Noise Push Push OSC Using Metamaterial Resonator (Metamatrial Resonator를 이용한 K-Band 저위상 잡음 Push Push OSC 설계)

  • Shim, Woo-Seok;Lee, Jong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.67-71
    • /
    • 2012
  • In this paper, a push-push oscillator at K-band with a double H-shape metamaterial resonator (DHMR) based on high-Q is proposed with metamaterial structure to improve the phase noise and output power. The proposed oscillator shows low phase noise and high output power. DHMR is designed to be high-Q at resonance frequency through strong coupling of E-field. oscillators which are combined in push-push structure improve output power. The propose push-push oscillator shows the output power of 3.1 dBm, the fundamental signal suppression of -23.7 dBc and phase noise of -116.28 dBc at 100 kHz offset frequency and 20.20 GHz center frequency.

Oscillator with High Harmonic Suppression Using Split Quarterwave Microstrip Resonator

  • Cho, Ho-Yun;Go, Min-Ho;Jo, Yun-Hyun;Park, Hyo-Dal
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.125-127
    • /
    • 2011
  • This letter presents a new type of resonator, namely, the split quarterwave microstrip resonator (SQMR), to improve the poor harmonic suppression and low Q-factors in conventional quarterwave microstrip resonators. An oscillator incorporating the proposed SQMR is designed, fabricated, and tested to demonstrate that, not only the second harmonic suppression, but also the phase noise of the oscillator can be improved. The oscillator with the SQMR shows improved second harmonic suppression of -74.59 dBc and phase noise figure of merit of -169.77 dBc/Hz at 1 MHz offset.

Low Phase Noise VCO using Microstrip Square Open Loop Split Ring Resonator (마이크로스트립 사각 개방 루프 SRR(Split Ring Resonator)를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.22-27
    • /
    • 2007
  • In this paper, a novel voltage-controlled oscillator (VCO) using the microstrip square open loop split ring resonator (OLSRR) is presented for reducing the phase noise. For this purpose, the square-shaped split ring resonator (SRR) haying the form of the microstrip square open loop is investigated. Compared with the microstrip square open loop resonator, the microstrip square OLSRR has the larger coupling coefficient value, which makes a higher Q value, and has reduced the phase noise of VCO. The VCO with 1.7V power supply has the phase noise of $-120\sim-116.5$ dBc/Hz @ 100 kHz in the tuning range, $5.746\sim5.854$ GHz. The figure of merit (FOM) of this VCO is $-200.33\sim-197$ dBc/Hz @ 100 kHz in the same tuning range.

Film Bulk Acoustic Wave Resonator for Bandpass Filter (밴드패스필터 구현을 위한 압전박막공진기 제작)

  • 김인태;박윤권;이시형;이윤희;이전국;김남수;주병권
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.597-600
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size and low cost, high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible suspended FBAR using surface micromachining. Membrane is composed $Si_3N_4SiO_2Si _3N_4$ multi layer and air gap is about 50${\mu}{\textrm}{m}$. Firstly, We perform one dimensional simulation applying transmission line theorem to verify resonance characteristic of the FBAR. Process of the FBAR is used MEMS technology. Fabricated FBAR resonate at 2.4GHz, $K^2_{eff}$ and Q are 4.1% and 1100.