• Title/Summary/Keyword: low NOx

Search Result 611, Processing Time 0.026 seconds

Stabilization of Abnormal Combustion of Dry Low NOx Gas Turbine Combustor for Power Generation (발전용 저 NOx 가스터빈의 연소불안정 및 열유동 안정화)

  • 안달홍;서석빈;정재화;박호영;차동진;김종진
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.513-516
    • /
    • 2003
  • 가스터빈 복합발전은 우리나라 총 발전설비 용량의 약 25%를 차지하고 있다. 따라서 이들 가스터빈의 안정적인 운전을 위한 연소관리기술의 개발이 필요하며, 특히 발전설비의 대기오염물 배출기준이 점차 강화됨에 따라 가스터빈의 저NOx 연소 운영기술의 확보가 필수적이다. 국내에는 서인천복합, 신인천복합, 울산복합 및 보령복합 발전소 등에 건식 저 NOx 연소기가 설치되어 운영 중에 있으며 신규 건설중인 복합발전소에는 모두 이들이 설치될 예정이다.(중략)

  • PDF

The Studies on the Thermal Resistant Properties of $WO_3/TiO_2$ and $V_2O_5-WO_3/TiO_2$ Catalysts for NOx Reduction of Flue Gases from Industrial Boiler and on Catalyst Surface Acid Characteristics (産業用 보일러의 燃燒 排가스 中 NOx 處理를 위한 SCR 用 $WO_3/TiO_2$$V_2O_5/TiO_2$ 觸媒들의 耐熱特性과 表面 酸特性에 關한 硏究)

  • 이중범;임상윤;정석진;성준용
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • In order to suggest an efficient catalyst systems for NOx reduction of flue gases from industrial boilers, $TiO_2$ supported $WO_3-V_2O_5, V_2O_5$ and $WS_2$ catalysts were tested for the performances of NOx reduction at high reactin temperature range (250-500$^\circ$C) using a simulated flue gas system. It was found that while the proposed $WO_3/TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts showed a significant high NOx reduction efficiency at about 350-400$^\circ$C, the conventional commercial catalyst of $V_2O_5/TiO_2$ showed a significant drop in NOx reduction efficiency due to the excessive $NH_3$ oxidation. From the measurement of surface acidities of those catalysts, it was found that the acidity are well correlated with the activities of NOx reduction. The reason of high activity of $WO_3$ series catalysts at high reaction temperature seems due to the low value of surface excess oxygen compared with that of $V_2O_5/TiO_2$ seems equivalent to the acid site of that catalyst.

  • PDF

NOx Emission Characteristic according to Aging of EGR Cooler in Non-Road Diesel Engine (EGR 적용 비도로 엔진의 쿨러 열화에 따른 질소산화물 배출특성)

  • Lee, Kyoung-Bok;Oh, Kwang-Chul
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.37-45
    • /
    • 2016
  • Exhaust gas recirculation has the advantage of being low-cost and easy to control of NOx emission. Therefore, it is most generally used to reduce NOx emission according to strengthen regulation. In the case of a non-road engine, such as the agricultural engine, since it mainly operate a middle or high-load state, NOx emission is decreased in accordance with the mapping range of the EGR rate, but results in an increase in the particulate matter which is caused to deposit and fouling problem of the EGR system. This problem has become an important issue for maintaining the performance of the engine, as well as emission performance. This study had examined the effects of cooler aging on the performance of heat transfer efficiency and NOx emission in non-road diesel engine. As a result of the EGR cooler aging during 200 hours engine operation, the cooling performance decreased about 25% compared with that of fresh cooler and the NOx emission increased about 14.6% on NRSC(non-road steady cycle) and 20% on NRTC(non-road transient cycle) compared with that of fresh cooler respectively.

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

The Study on the Combustion and Ash Deposition Characteristics of Ash Free Coal and Residue Coal in a Drop Tube Furnace (DTF를 이용한 무회분 석탄과 잔탄의 연소 및 회 점착 특성에 관한 연구)

  • Moon, Byeung Ho;Kim, Jin Ho;Sh, Lkhagvadorj;Kim, Gyu Bo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.89-96
    • /
    • 2015
  • Recently, much research has been put into finding the causes and solutions of slagging/fouling problems that occur at the end of the boiler. This slagging/fouling, caused by low-rank coal's ash, disturbs the thermal power and greatly reduces efficiency. In environmental aspects, such as NOx pollution, governments have been implementing restrictions on the quantity of emission gases that can be released into the atmosphere. To solve these problems, research on Ash Free Coal (AFC), which eliminates ash from low-rank coal, is in progress. AFC has advantages over similar high-rank coals because it increases the heating value of the low grade coal, reduces the contaminants that are emitted, and decreases slagging/fouling problems. In this study, using a DTF, the changes of NOx emissions, unburned carbon, and the characteristics of ash deposition were identified. KCH raw coal, AFC extracted from KCH, residue coal, Glencore, and Mixed Coal (Glencore 85wt% and residue coal 15wt%) were studied. Results showed that AFC had a significantly lower emission of NOx compared to that of the raw coal and residue coal. Also, the residue coal showed a higher reactivity compared to raw coal. And finally, In the case of the residue coal and mixed coal, they showed a lower ash deposition than that of low-rank coal.

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료 분무특성에 관한 실험적 연구)

  • Park, Min-Chul;Oh, Sang-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.42-50
    • /
    • 2001
  • An experimental study has been carried on high-preheated temperature air combustion. Because the flames with high-preheated temperature air combustion were much more stable and homogeneous(both temporally and spatially) as compared to the room-temperature combustion air. The global flame feature showed range of flame colors (yellow, blue, blurish-green) over the range of conditions. Low level of NOx along with low level of CO have been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on preheated temperature and oxygen concentration air.

  • PDF

Temporal and Spatial Distributions of PM10, NOx and O3 around the Road (도로 주변의 PM10, NOx 및 O3의 시공간적 농도 분포 연구)

  • Kwon O-Yul;An Young-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.440-450
    • /
    • 2006
  • PM10, NOx, and $O_3$ were measured at six locations, of which each three is horizontally and vertically distributed respectively, in an apartment complex around the heavily traffic road. Those were measured seven times a day with two hours interval starting from 8 o'clock in the morning for 15 days during May 2005 $\sim$ September 2005. PM10 and NOx showed high concentrations in rush hours while low concentrations in midday due to the direct emissions from automobiles in operation. Temporal variations of 01 showed very much similar trend appeared in normal urban atmospheres. The spatial distributions of PM10, NOx and $O_3$ showed that almost all of concentrations were higher in a row of Roadside > Surface at 130 m apart from the road > Surface at 230 m apart from the road > 3rd floor of apartment building > 15th floor of apartment building > 27th floor of apartment building. Model equations, which can project spatial concentration distributions, were constructed by combining the horizontal and the vertical linear regression equations derived from six mean values corresponding to six measuring locations. According to inter-comparison of PM10, NOx, and $O_3$ with the constructed model equations, concentration gradients were higher in a row of Vertical direction of NOx > Vertical direction of PM10 > Horizontal direction of NOx > Horizontal direction of PMIO > Vertical direction of $O_3$ > Horizontal direction of $O_3$. Why concentration gradient of particulate PM10 is lower than that of gaseous NOx is in question, and should be studied.

Effect of Pressure and Stoichiometric Air Ratio on NOx Emissions in Gas-Turbine Dump Combustor with Double Cone Burner (이중원추형 모형연소기에서 압력과 공기비에 따른 NOx 배출특성)

  • Nam, Dong-Hyun;Nam, Hyun-Su;Han, Dong-Sik;Kim, Gyu-Bo;Cho, Seung-Wan;Kim, Han-Suk;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • This work presents an experimental investigation of NOx emissions according to inlet air temperature (550-660 K), stoichiometric air ratio (${\lambda}$, 1.4-2.1), and elevated pressure (2-5 bar) in a High Press Combustor (HPC) equipped with a double cone burner, which was designed by Pusan Clean Coal Center (PC3). The exhaust-gas temperature and NOx emissions were measured at the end of the combustion chamber. The NOx emissions generally decreased as a function of increasing ${\lambda}$. On the other hand, NOx emissions were influenced by ${\lambda}$, inlet air temperature and pressure of the combustion chamber. In particular, when the inlet air temperature increased, the flammability limit was extended to leaner conditions. As a result, a higher adiabatic temperature and lower NOx emissions could be achieved under these operation conditions. The NOx emissions that were governed by thermal NOx were greatly increased under elevated pressures, and slightly increased at sufficiently low fuel concentrations (${\lambda}$ >1.8).

Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion (고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성)

  • Park, Youngsoo;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.

The Emission of NO2 and NH3 in Selective Catalytic Reduction over Manganese Oxide with NH3 at Low Temperature (망간계 금속산화물을 이용한 저온 선택적 촉매 환원 반응에서 NO2와 NH3 배출)

  • Kim, Sung Su;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • The catalytic behavior of the manganese oxides was studied for the selective catalytic reduction with ammonia at a low temperature condition under $200^{\circ}C$. Outlet unreacted ammonia increases with decreasing temperature and increasing $NH_3/NOx$ mole ratio, however $NO_2$ shows an opposite result. $NO_2$ is generated by the adsorption of NO on the catalyst and the following oxidization to nitrates. Unreacted NH3 slip is not observed even at the $NH_3/NOx$ feed ratio above 1.0 due to the reaction between formed nitrates on the catalyst and adsorbed ammonia. The addition of Zr increases $NO_2$ generation, whereas the addition of CeO2 on the catalyst decreases $NO_2$ generation. Furthermore, the additon of the metal oxide induce DeNOx efficiency to reduce.