• Title/Summary/Keyword: loss of plasticity

Search Result 108, Processing Time 0.026 seconds

A Study on Fabrication of Optical Waveguide using Laser Direct Writing Method (레이저 직접묘화기법에 의한 광도파로 제작에 관한 연구)

  • 신보성;김정민;김재구;조성학;장원석;양성빈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.391-394
    • /
    • 2003
  • Laser direct writing process is developed 3rd harmonic Diode Pumped Solid State Laser with the near visible wavelength of 355 m sensitive polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D. It is important to reduce line width for image mode waveguides, so some investigations will be carried out in various conditions of process parameters such as laser power, writing speed, laser focus and optical properties of polymer. This process could be to fabricate a single mode waveguide without expensive mask projection method. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8.4 mm width and 7.5 mm height. Propagation loss of straight waveguide measured 3 dB/cm at 1,550 nm.

  • PDF

Three Dimensional Simulation of Edge-Plate Rolling Process Using Rigid Plastic Finite Element Method (강소성 유한요소법을 이용한 에지-평압연 공정의 삼차원 해석)

  • 이동재;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.244-248
    • /
    • 1997
  • In the rolling process, keeping the accuracy of the slab width is a very important problem. So the edge rolling is used with the plate rolling. But in the edge rolling, a local contraction of width, called "width necking", occurs in the top and tail portion of a slab and becomes the cause of crop loss. In this investigation, the three dimensional deformation behavior in the edge-plate rolling is simulated by rigid plastic FEM(PROLL). And the influence of the rolling condition on "width necking" and the accuracy of width is examined.

  • PDF

Continuous Fabrication Process of Rheology Material by Rotational Barrel Equipment (회전식 바렐 장치에 의한 레올로지 소재의 연속 제조 공정)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.103-106
    • /
    • 2004
  • The new rheology fabrication process has been developed to rheo die casting and rheo forming process. Thixoforming process has disadvantages in terms of induction reheating process, scrap recycling, loss of raw material and cycle time. Therefore, to reduce the number of process, new rheology fabrication process with specially designed the rotational barrel type equipment has been proposed to apply in various part productions. The barrel type equipment, which could continuously fabricate the rheology materil, was specially designed to have a function to control cooling rate, shear rate and temperature. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed. The barrel surface has both the induction heating system and the cooling system to control the temperature of molten metal. By using this system, the effect of the rotation speed and the rotation time on the microstructure was widely examined. The possibility for the rheoforming process was investigated with microstructural characteristic.

  • PDF

A Study on Wear Characteristics of Piston Running Part (피스톤 런닝부의 소재에 따른 마모특성 연구)

  • Jang, J.H.;Yi, H.K.;Joo, B.D.;Lee, J.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.375-378
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

  • PDF

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

A Study of prediction problem to Sheet metal forming processing (박판성형 공정에서의 불량 예측에 관한 연구)

  • Ko Hyung-Hoon;Lee Chan-Ho;Moon Won-Sub;Park Young-Keun;Jung Dong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.398-401
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. Such press-forming process are the used machine ability and the characteristic, used material, the accuracy of the part which becomes processing and side condition of a process are considered and the designed. The purpose of this study is apply efficiently sheet metal forming processing by 3D formation-analyzed program simulations in the site. By a study, forming process was simulation to drawing and trimming and cam process using static-implicit method software. By making apply this to an industrial site the productivity improvement and cost reduction etc. effect able was predicted.

  • PDF

Process Design to Prevent Flow Defect of Piston-Pin for Automobile (자동차용 피스톤-핀의 유동결함 방지를 위한 공정설계)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.155-158
    • /
    • 2000
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In cold forging of piston-pin Lapping defect a kind of flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The finite element simulations are applied to analyze the flow defect. This study proposed processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experiments for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF

Deformation and crystallization of Cu-base BMG alloy in the supercooled liquid region (과냉각 액상 구간에서 Cu-based BMG 합금의 결정화와 변형 거동)

  • Park, E.S.;Lee, J.H.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.143-145
    • /
    • 2007
  • The correlation between crystallization and deformation behavior in the supercooled liquid region (SLR) of a $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ bulk metallic glass (BMG) alloy is investigated by compression tests, differential scanning calorimetry (DSC), electron energy loss spectrometry (EELS) and high resolution transmission electron microscopy (HRTEM). In the SLR, This BMG alloy was strongly depended on the deformation temperature and the alloy exhibits important change in deformation behavior after a given time which is directly connected to the development of crystallization. Compressive stress impeded decomposition and consequently retarded forming of nano-crystal, which led to enlarge the homogeneous deformation region of the BMG alloy in SLR during compression test.

  • PDF

A technical study on mold of productivity improvement for Insert Injection of Reverse Engineering (리버스 엔지니어링을 통한 인서트 사출의 생산성향상을 위한 금형기술연구)

  • Lee, S.Y.;Kim, Y.G.;Woo, C.K.;Kim, O.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.535-538
    • /
    • 2008
  • Insert-injection molding can inject two different materials or two colors in the same mold and process. If this injection process use, product has ability because the base part maintain strength and specified part can inject soft-material. It makes the cost down by single operation automatically for saving wages. In this paper, we designed double-injection mold for automobile remote control to inject secondary using this part as insert after inject external appearance of product. CAE analysis was progressed gate location and runner size as variable and analysis result is reflected in mold design process. As a result, it could solved badness that is generated at the conventional mold. Additionally, cost is downed by reducing loss of runner as well as could omit painting process because surface of finished product is improved through new mold.

  • PDF

Variations of Temperature and Pressure in the Cavity for Operational Conditions of Injection Molding (사출성형의 공정변수에 따른 캐비티 내의 온도와 압력의 변화)

  • Kim S. W.;Park H. C.;Lyu M.-Y.;Jin Y. S.;Kim D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.70-74
    • /
    • 2004
  • Pressure and temperature in the cavity of injection molding have been investigated. Special injection mold was designed to install pressure and temperature sensors. The sensors were supplied by KISTLER and the pressure and temperature were measured for various operational conditions, such as injection pressure, holding pressure, cooling time, mold temperature, and injection temperature. As injection pressure increased cavity pressure and temperature increase. There were no big differences in temperatures according to the holding pressures. As mold temperature increased pressure and temperature in the cavity increase. The flowability of resin increases as mold temperature increases subsequently the pressure in the cavity increases since the pressure loss is less in the low viscous medium than high ciscous medium. The cavity temperature highly depends upon mold temperature.

  • PDF