• Title/Summary/Keyword: loss modeling

Search Result 728, Processing Time 0.026 seconds

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

An Analytical Study on Composite Beam Performance with Post-Fire Temperature Using ANSYS Program (ANSYS를 이용한 화재 후 온도에 따른 합성보 성능에 관한 해석적 연구)

  • Kwak, Sung-Shin;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.391-400
    • /
    • 2019
  • In the case of fire, a structure loses its original stiffness due to the temperature rise, and the load bearing capacity decreases. The loss of structural strength increases with increasing fire time of the structure. To prevent the collapse of buildings, it is very important to understand whether or not the members are damaged. On the other hand, there is insufficient data to be a guideline for diagnosing and evaluating the residual strength of the members in Korea. Therefore, this study examined the resistance performance by Finite-Element-Analysis of composite beams, which are composite structures among structural members. Composite beam modeling was carried out based on the model used in the Electrical Penetration Room (EPR) in cooperation with KEPCO. The heat transfer analysis and structural analysis of the critical phase were performed using ANSYS, a finite element analysis program. ANSYS was used to perform heat transfer analysis and structural analysis at the static analysis. To analyze the residual performance, the temperature distribution of the composite beam and the maximum displacement result of the heat-affected structure analysis were derived and the experimental data and the structural analysis result data were compared and analyzed.

Analysis of Abnormal Path Loss in Jeju Coastal Area Using Duct Map (덕트맵을 이용한 제주해안지역 이상 전파특성 분석)

  • Wang, Sungsik;Lim, Tae-Heung;Chong, Young Jun;Go, Minho;Park, Yong Bae;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • This study analyzes the propagation of the path losses between Jeju-do and Jin-do transceivers located in the coastal areas of Korea using the Advanced Refractive Prediction System(AREPS) simulation software based on the actual coastal weather database. The simulated data is used to construct a duct map according to the altitude and thickness of the trap. The duct map is then divided into several regions depending on the altitude parameters of Tx and Rx, which can be used to effectively estimate the abnormal wave propagation characteristics due to duct occurrence in the Jeju-do coastal area. To validate the proposed duct map, two representative atmospheric index samples of the weather database in May 2018 are selected, and the simulated path losses using these atmospheric indices are compared with the measured data. The simulated path losses for abnormal conditions at the Rx point at Jeju-do are 167.7 dB and 192.3 dB, respectively, which are in good agreement with the measured data of 164.4 dB and 194.9 dB, respectively.

Development of KBIMS Architectural and Structural Element Library and IFC Property Name Conversion Methodology (KBIMS 건축 및 구조 부재 라이브러리 및 IFC 속성명 변환 방법 개발)

  • Kim, Seonwoo;Kim, Sunjung;Kim, Honghyun;Bae, Kiwoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.505-514
    • /
    • 2020
  • This research introduces the method of developing Korea BIM standard (KBIMS) architectural and structural element library and the methodology of converting KBIMS IFC property names with special characters. Diverse BIM tools are utilizing in project, however BIM library researches lack diversity on BIM tool selection. This research described the method to generate twelve categories and seven hundred and ninety-three elements library containing geometrical and numerical data in CATIA V6. KBIMS has its special property data naming systems which was the challenge inputting to ENOVIA IFC database. Three mapping methods for special naming characters had been developed and the ASCII code method was applied. In addition, the convertor prototype had been developed for searching and replacing the ASCII codes into the original KBIMS IFC property names. The methodology was verified by exporting 2,443 entities without data loss in the sample model conversion test. This research would provide a wider choice of BIM tool selection for applying KBIMS. Furthermore, the research would help on the reduction of data interoperability issues in projects. The developed library would be open to the public, however the continuous update and maintenance would be necessary.

Design and Implementation of Interface System for Swarm USVs Simulation Based on Hybrid Mission Planning (하이브리드형 임무계획을 고려한 군집 무인수상정 시뮬레이션 시스템의 연동 인터페이스 설계 및 구현)

  • Park, Hee-Mun;Joo, Hak-Jong;Seo, Kyung-Min;Choi, Young Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Defense fields widely operate unmanned systems to lower vulnerability and enhance combat effectiveness. In the navy, swarm unmanned surface vehicles(USVs) form a cluster within communication range, share situational awareness information among the USVs, and cooperate with them to conduct military missions. This paper proposes an interface system, i.e., Interface Adapter System(IAS), to achieve inter-USV and intra-USV interoperability. We focus on the mission planning subsystem(MPS) for interoperability, which is the core subsystem of the USV to decide courses of action such as automatic path generation and weapon assignments. The central role of the proposed system is to exchange interface data between MPSs and other subsystems in real-time. To this end, we analyzed the operational requirements of the MPS and identified interface messages. Then we developed the IAS using the distributed real-time middleware. As experiments, we conducted several integration tests at swarm USVs simulation environment and measured delay time and loss ratio of interface messages. We expect that the proposed IAS successfully provides bridge roles between the mission planning system and other subsystems.

A study on time series linkage in the Household Income and Expenditure Survey (가계동향조사 지출부문 시계열 연계 방안에 관한 연구)

  • Kim, Sihyeon;Seong, Byeongchan;Choi, Young-Geun;Yeo, In-kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.553-568
    • /
    • 2022
  • The Household Income and Expenditure Survey is a representative survey of Statistics Korea, which aims to measure and analyze national income and consumption levels and their changes by understanding the current state of household balances. Recently, the disconnection problem in these time series caused by the large-scale reorganization of the survey methods in 2017 and 2019 has become an issue. In this study, we model the characteristics of the time series in the Household Income and Expenditure Survey up to 2016, and use the modeling to compute forecasts for linking the expenditures in 2017 and 2018. In order to evenly reflect the characteristics across all expenditure item series and to reduce the impact of a specific forecast model, we synthesize a total of 8 models such as regression models, time series models, and machine learning techniques. In particular, the noteworthy aspect of this study is that it improves the forecast by using the optimal combination technique that can exactly reflect the hierarchical structure of the Household Income and Expenditure Survey without loss of information as in the top-down or bottom-up methods. As a result of applying the proposed method to forecast expenditure series from 2017 to 2019, it contributed to the recovery of time series linkage and improved the forecast. In addition, it was confirmed that the hierarchical time series forecasts by the optimal combination method make linkage results closer to the actual survey series.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.

A Study on AR Algorithm Modeling for Indoor Furniture Interior Arrangement Using CNN

  • Ko, Jeong-Beom;Kim, Joon-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.11-17
    • /
    • 2022
  • In this paper, a model that can increase the efficiency of work in arranging interior furniture by applying augmented reality technology was studied. In the existing system to which augmented reality is currently applied, there is a problem in that information is limitedly provided depending on the size and nature of the company's product when outputting the image of furniture. To solve this problem, this paper presents an AR labeling algorithm. The AR labeling algorithm extracts feature points from the captured images and builds a database including indoor location information. A method of detecting and learning the location data of furniture in an indoor space was adopted using the CNN technique. Through the learned result, it is confirmed that the error between the indoor location and the location shown by learning can be significantly reduced. In addition, a study was conducted to allow users to easily place desired furniture through augmented reality by receiving detailed information about furniture along with accurate image extraction of furniture. As a result of the study, the accuracy and loss rate of the model were found to be 99% and 0.026, indicating the significance of this study by securing reliability. The results of this study are expected to satisfy consumers' satisfaction and purchase desires by accurately arranging desired furniture indoors through the design and implementation of AR labels.

Utilizing cell-free DNA to validate targeted disruption of MYO7A in rhesus macaque pre-implantation embryos

  • Junghyun Ryu;Fernanda C. Burch;Emily Mishler;Martha Neuringer;Jon D. Hennebold;Carol Hanna
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.292-297
    • /
    • 2022
  • Direct injection of CRISPR/Cas9 into zygotes enables the production of genetically modified nonhuman primates (NHPs) essential for modeling specific human diseases, such as Usher syndrome, and for developing novel therapeutic strategies. Usher syndrome is a rare genetic disease that causes loss of hearing, retinal degeneration, and problems with balance, and is attributed to a mutation in MYO7A, a gene that encodes an uncommon myosin motor protein expressed in the inner ear and retinal photoreceptors. To produce an Usher syndrome type 1B (USH1B) rhesus macaque model, we disrupted the MYO7A gene in developing zygotes. Identification of appropriately edited MYO7A embryos for knockout embryo transfer requires sequence analysis of material recovered from a trophectoderm (TE) cell biopsy. However, the TE biopsy procedure is labor intensive and could adversely impact embryo development. Recent studies have reported using cell-free DNA (cfDNA) from embryo culture media to detect aneuploid embryos in human in vitro fertilization (IVF) clinics. The cfDNA is released from the embryo during cell division or cell death, suggesting that cfDNA may be a viable resource for sequence analysis. Moreover, cfDNA collection is not invasive to the embryo and does not require special tools or expertise. We hypothesized that selection of appropriate edited embryos could be performed by analyzing cfDNA for MYO7A editing in embryo culture medium, and that this method would be advantageous for the subsequent generation of genetically modified NHPs. The purpose of this experiment is to determine whether cfDNA can be used to identify the target gene mutation of CRISPR/Cas9 injected embryos. In this study, we were able to obtain and utilize cfDNA to confirm the mutagenesis of MYO7A, but the method will require further optimization to obtain better accuracy before it can replace the TE biopsy approach.