• Title/Summary/Keyword: loss load factor

Search Result 155, Processing Time 0.03 seconds

Endurance Evaluation and Fatigue Property fo Axle Housing (Axle Housing의 내구성 판단과 피로특성)

  • Byeon, Hui-Mun;Lee, Sun-Bok
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.3-13
    • /
    • 1984
  • Fatigue failure of axle housing could cause many injuries and much financial loss. This challenges the engineer to improve design decisions involving fatigue. Endurance evaluation of axle housing is great interest to auto-mobile manufacturers for the sake of safety and reliability. Axle housing is subjected to gross vehicle weight(G.V.W)as mean load and alternating load. Theoretical design diagram involving mean and alternating stresses is used for the evaluation of axle housing fatigue endurance with the equivalent stress of fatigue critical area on the axle housing. Four point bending fatigue tests on axle housing with constant amplitude loading at approximately R=0 were performed with 50 ton servohydraulic strucural fatigue testing machine developed at KIMM. Specimens were made with the same material STKM 13B as the axle housing and tested to obtain S_N data. Five specimens of STKM 13B were tested at 253.61 MPa and weibull distribution was obtained at the same stress level. Material data and structural data were compares and fatigue stress property factor and fatigue life property factor were obtained.

  • PDF

Economic Analysis of High-Efficiency Production Facilities using Capital Recovery Factor (자본회수계수를 고려한 고효율 생산설비의 경제성분석)

  • Park, Hyung-Joon;Chung, Chcn-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.117-123
    • /
    • 2007
  • This paper is about the economic analysis of the replacement of electric facilities in the production facilities. As the interest of energy is increasing, the efficiency of facilities become more important. So, in this paper, we diagnosed facilities, especially electric motors, in the plant and calculated the operating efficiency, power loss with the load factor. And when we replace these facilities into high-efficiency motors, we also calculated new energy efficiency, energy loss and economic analysis through capital recovery factor. As a result, we economically proved that using high-efficiency motor is more beneficial than using non-high-efficiency motors in the model process.

Investigation on Seismic Design Component and Load for Nonstructural Element (건축 비구조재의 내진설계요소 및 내진설계하중에 관한 고찰)

  • Choi, Insub;Lee, Joo-Hee;Sohn, Jung-Hoon;Kim, JunHee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.117-124
    • /
    • 2019
  • Nonstructural elements are installed according to the function of a building, and refer to the elements other than a structural system that resists external loads. Although the nonstructural elements had the largest part of seismic loss of buildings, seismic design of buildings mainly focuses on structural system and the seismic design of nonstructural elements are rarely conducted. In this study, the seismic design provisions of nonstructural elements presented in Uniform Building Code (UBC) and International Building Code (IBC) were investigated in order to analyze the seismic design considerations of nonstructural elements presented in Korean Building Code (KBC). The results showed that the equivalent static load applied to seismic design of nonstructural elements was revised to take into consideration a total of five items such as effective ground acceleration, vertical amplification factor, response amplification factor, response modification factor, importance factor.

High-Speed BLDC Motor Design for Suction Fan and Impact on the Loss caused by Core Welding

  • Hong, Hyun-Seok;Kim, In-Gun;Lee, Ho-Joon;Go, Sung-Chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper deals with the effects of welding, which is done to fix the stator stack, on a motor in case of fabricating a prototype motor that is manufactured in a small quantity. In the case of a small motor, the stator is designed and fabricated with the segmented core as a way to raise the fill factor of winding wire to the utmost within a limited size. In case of fabrication by welding both inside and outside of the stator in order to fix the segmented-core stator, the effects of stack are ignored, and the eddy current loss occurs. This paper performed the no-load test on an IPM-type BLDC motor for driving the suction fan of a vacuum cleaner, which was manufactured by using a segmented-core stator. As a result of the test, it was found that input power more than expected was supplied. To analyze the effects of welding by using the finite element analysis method and verify them experimentally, a stator was re-manufactured by bonding, and input power supplied during the no-load test was compared.

Development of Voltage Controlled Power Factor Compensation System using Slidac (슬라이닥을 이용하는 전압 제어 방식의 역률보상시스템 개발)

  • Joung, Sanghyun;Lee, Hyun-woo;Park, Young-kyun;Park, Chul-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.115-122
    • /
    • 2017
  • In this paper, we propose a novel power factor compensation system using slidac. The proposed power factor compensation system compensates the power factor by adjusting the output voltage of the slidac. In the conventional power factor compensation system using capacitor bank method, the power factor compensation error occurs depending on the load condition due to the limitation of the compensation capacitor capacity. However, the proposed system can finely change slidac output voltage applied to the capacitor, therefore power factor can be compensated up to 100% without error. We compare the proposed system with the conventional system, and confirm that the proposed system has excellent power factor compensation performance through simulations and experiments. If the proposed power factor compensation system is applied to an industrial field, a power factor compensation performance can be maximized. As a result, it is possible to reduce of electricity prices, reduce of line loss, increase of load capacity, ensure the transmission margin capacity, and reduce the amount of power generation.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Design of MTM Antennas using Equivalent Circuit Considering Radiation Loss (방사 손실 모델링을 이용한 MTM 안테나 설계)

  • Kim, Tack-Gyu;Lee, Bom-Son
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper, we propose a lossy MTM transmission line unit cell and retrieve the parameter values related with radiation effects. Based on this unit cell model, we plot dispersion diagrams and analyze resonance conditions. We also discuss the input impedance or admittance behavior when we terminate the load as open or short. Then, we examine the quality factor and return loss bandwidth. We also design a very compact unit cell antenna using the provided lossy MTM-TL model. The results based on EM simulations and measurements are shown to be in good agreement with those based on circuit simulation.

Loss analysis for the novel half bridge inverter with load free-wheeling mode (부하 환류모드를 제공하는 새로운 반 브리지 인버터의 손실해석)

  • Yeon, Jae-Eul;Cho, Kyu-Min;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.216-219
    • /
    • 2003
  • The resonant inverter is widely used for induction heating, electronic ballast and supersonic motor driving circuit. In the meantime, control techniques of PWM, PFM etc.. are mainly applied to control the output power of the resonant inverter. But, in the case of using the half bridge resonant inverter, it is difficult to control the output power by PWM, because its main circuit does not provide the load free-wheeling mode. Therefore, PAM or PFM was usually applied to control output power of half bridge resonant inverter. However, PAM needs a variable DC voltage source, which makes the system structure more complex. On the other hand, in case of PFM, efficiency is declined by operation with poor power factor. This paper Proposed the novel half bridge resonant inverter which can provide the load free-wheeling mode. Also its analysis results for PWM operation with unity fundamental power factor are Presented and compared with other resonant inverters using PWM and PFM.

  • PDF

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

Thermal Analysis using Thermal Equivalent Circuit Analysis and Finite Element Method of In-wheel Motor (In-wheel 전동기의 열 등가회로 해석 및 유한요소해법을 이용한 열해석)

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Hong, Jung-Pyo;Nam, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.941-942
    • /
    • 2011
  • A thermal equivalent circuit of IPMSM considering eddy current loss of PM and core loss of rotor is proposed. This thermal equivalent model is represented by the thermal resistances and thermal capacitances. In order to determine the factor of each parameter, a heating test is processed. Additionally, the eddy current loss of PM is calculated by a transient 3D finite element analysis. Finally, this thermal equivalent model is verified by a temperature test in a 25kW 12-pole/18-slot IPMSM with varying load.

  • PDF