• Title/Summary/Keyword: loss in failure load

Search Result 90, Processing Time 0.045 seconds

Study of the Accelerated Weathering of Sitka spruce under Acidic Conditions (산성(酸性) 조건하(條件下)에서 Sitka spruce의 기상(氣象) 열화(劣化) 가속(加速)에 관(關)한 연구(硏究))

  • Kim, Jae-Jin;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.9-14
    • /
    • 1993
  • Weathering of wood in a region of acid rain was performed by the test which thin veneers of Sitka spruce were exposed to outdoor weathering for a total of 18 weeks, with a daily soaking for 30 minutes in acidified water in the pH range 2~5.6. The weathering measured by weight loss and loss in maximum failure load in tension was accelerated by the increase in the acidity of acidified water and in the period of outdoor exposure. It was also shown that the weathering was accelerated even with low acidic conditions in the case of long exposure period, although the weathering was rapidly accelerated with high acidic conditions. When compared the degree of weight loss with that of loss in failure load by weathering, the latter was much greater. From the results of this research, it could be concluded that at pH 4.0 or below of precipitation, the acceleration of weathering of exterior wood would become serious problems, which would be caused deterioration in performance of exterior wood.

  • PDF

Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Effect of Boundary Conditions on failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

A study on the analysis of the failure probability based on the concept of loss probability (결손확률모델에 의한 파손확률 해석에 관한 연구)

  • 신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2037-2047
    • /
    • 1991
  • Strength is not simply a single given value but rather is a statistical one with certain distribution functions. This is because it is affected by many unknown factors such as size, shape, stress distribution, and combined stresses. In this study, a model of loss probability is proposed in view of the fact that one of the fundamental configuration of nature is hexagonal, for example, the shapes of lattice unit, grain, and so on. The model sues the concept of loss of certain element in place of Jayatilaka-Trustrum's length and angle of cracks. Using this model, the loss probability due to each loss of certain elements is obtained. Then, the maximum principal stress is calculated by the finite element method at the centroid of the elements under the tensile load for the 4,095 models of analysis. Finally, the failure probability of the brittle materials is obtained by multiplying the loss probability by the ratio of the maximum principal stress to theoretical tensile strength. Comparison of the result of the Jayatilaka-Trustrum's model and the proposed model shows that the failure probabilities by the two methods are in good agreement. Further, it is shown that the parametric relationship of semi-crack lengths for various degrees of birittleness can be determined. Therefore, the analysis of the failure probability suing the proposed model is shown to be promising as a new method for the study of the failure probability of birttle materials.

A Case Study on Engineering Failure Analysis of Link Chain

  • Kim, Tae-Gu;Lee, Seong-Beom;Lee, Hong-Chul
    • Safety and Health at Work
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Objectives: The objective of this study was to investigate the effect of chain installation condition on stress distribution that could eventually cause disastrous failure from sudden deformation and geometric rupture. Methods: Fractographic method used for the failed chain indicates that over-stress was considered as the root cause of failure. 3D modeling and finite element analysis for the chain, used in a crane hook, were performed with a three-dimensional interactive application program, CATIA, commercial finite element analysis and computational fluid dynamic software, ANSYS. Results: The results showed that the state of stress was changed depending on the initial position of the chain that was installed in the hook. Especially, the magnitude of the stress was strongly affected by the bending forces, which are 2.5 times greater (under the simulation condition currently investigated) than that from the plain tensile load. Also, it was noted that the change of load state is strongly related to the failure of parts. The chain can hold an ultimate load of about 8 tons with only the tensile load acting on it. Conclusion: The conclusions of this research clearly showed that a reduction of the loss from similar incidents can be achieved when an operator properly handles the installation of the chain.

Optimal Routing of Distribution Network Considering Reliability Indices (신뢰도 지수를 고려한 배전계통의 최적 전력전송경로 결정)

  • 신동환;노병권;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1073-1080
    • /
    • 1999
  • Optimal routing of distribution networks can be attained by keeping the line power capacity limit to handle load requirements, acceptable voltage at customer loads, and the reliability indices such as SAIFI, SAIDI, CAIDI, and ASAI limits. This method is composed of optimal loss reduction and optimal reliability cost reduction. The former is solved relating to the conductor resistance of all alternative routes, and the latter is solved relating to the failure rate and duration of each alternative route. The routing considering optimal loss only and both optimal loss and optimal reliability cost are compared in this paper. The case studies with 10 and 24 bus distribution networks showed that reliability cost should be considered as well as loss reduction to achieve the optimal routing in the distribution networks.

  • PDF

A Proposal of On-line Management Method for Distribution Transformer using Loss-of-life Calculation (수명 손실 계산을 이용한 온라인 배전용 변압기 관리 방안 제시)

  • Kim, Dong-Hyun;Kim, Jae-Chul;Choi, Joon-Ho;Kim, Oun-Seok;Yun, Yong-Han;Min, Kyeoung-Rae
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.61-63
    • /
    • 2000
  • As increasing the failure of distribution transformers, we need to manage them efficiently. This paper proposes the method for distribution transformer's management using loss-of-life calculation. The Data Acquisition System(DAS) was developed to manage transformers and the HDLC protocol applied to the system. It will be feasible application to diagnose distribution transformers by checking load conditions such as top oil temperature, ambient temperature, load current, etc. and using loss-of-life calculation.

  • PDF

ZVS Resonant Energy Unbalance Problem & Solution of ZVS Full-bridge Converter (ZVS Full-bridge 컨버터의 ZVS 공진 에너지 불평형 문제와 해결 방법)

  • Lee Dong-Youn;Lee Il-Oun;Cho Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.364-367
    • /
    • 2001
  • ZVS Full-bridge converter is widely used in medium power level(1-3kW). ZVS can be designed within a limited load range and ZVS failure at light load condition is assumed to be acceptable within the given efficiency and thermal constraints. However, unbalanced ZVS resonant energy caused by dc blocking capacitor may alleviate the switching loss problem at light load condition. ZVS resonant energy is unbalanced by do blocking capacitor. This problem causes loss and heat concentration of a switch leg, In this paper, this problem is analyzed, and a novel control method is proposed to solve the problem.

  • PDF

Load Balance System for the SFC Based DLP solution (SFC 기반 DLP 솔루션을 위한 부하분산 시스템)

  • Song, Wang-Eun;Jung, Sou-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.451-453
    • /
    • 2016
  • In this paper, we propose a Load Balance System for SFC based on DLP solution. SFC based on DLP solution does not distribute to the user data and each DLP server manages all traffic generated by the user device. When using existing algorithms such as the Load Balance Round Robin, Least Connection does not consider the resource usage of DLP server so traffic is not efficiently distributed due to different user traffic usage. It causes system failure and overload of the DLP server. Therefore, we propose the architecture of a Load Balance system for SFC based on DLP solution to perform the Load Balance based on the resource usage of DLP server through a LBM server in this paper.

Behavior Characteristics of FRP-Concrete Composite Beam using FRC (FRC를 적용한 FRP-콘크리트 합성보의 거동특성)

  • Cho Jeong-Rae;Cho Keunhee;Kim Byung-Suk;Chin Won Jong;Kim Sung Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF