• Title/Summary/Keyword: loss development factor

Search Result 356, Processing Time 0.023 seconds

Study of the Measurement of Young's Modulus and Loss Factor for a Viscoelastic Damping Material Using a Multi Degree of Freedom Curve Fitting Method and RKU Equation (다자유도 곡선 맞춤법과 RKU 기법을 이용한 점탄성 감쇠재의 탄성 및 손실계수 추정방법 연구)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong;Jeon, Jae-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • Offshore structures, such as a platform, a buoy, or a floating vessel, are exposed to several dynamic loads, and viscoelastic damping material is used to reduce the vibration of offshore structures. It is important to know the properties of viscoelastic materials because loss factor and Young's modulus of the viscoelastic damping material are dependent on frequency and temperature. In this study, an advanced technique for obtaining accurate loss factor and Young's modulus of the viscoelastic damping material is introduced based on a multi degree of freedom curve-fitting method and the RKU (Ross-Kerwin-Ungar) equations. The technique is based on a modified experimental procedure from ASTM E 756-04. Loss factor and Young's modulus of the viscoelastic damping material are measured for different temperatures by performing the test in a temperature-controlled vibration measurement room where temperature varies from 5 to 45 degrees Celsius.

Design for Improving the Loss Factor of Composite with Sandwich Structure (샌드위치 구조를 가지는 복합재의 손실계수 향상을 위한 설계)

  • Lee, C. M.;Jeon, G.S.;Kang, D.S.;Kim, B.J.;Kim, J.H.;Kang, M.H.;Seo, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • Underwater weapon system is required to structurally strong material, since as it is directly exposed to external shock. It should also be using the lightweight material in order to take advantage of buoyancy. Composite materials meet these requirements simultaneously. Particularly in the case of submarine, composite materials are widely used. It is important to have a high strength enough to be able to withstand external shock, but it is also important to attenuate it. In a method for the shock damping, viscoelastic damping materials are inserted between the high strength composite material as a sandwich structure. Shock attenuation can be evaluated in the loss factor. In ASTM(American Society of Testing Materials), evaluation method of the loss factor of cantilever specimens is specified. In this paper, mode tests of the cantilever are performed by the ASTM standard, in order to calculate the loss factor of the viscoelastic damping material by the specified expression. Further, for verifying of the calculated loss factor, mode test of compound beams is carried out. In addition, the characteristics of the material were analyzed the effect on the loss factor.

A Study to Evaluate and Remedy Universal Soil Loss Equation Application for Watersheds and Development Projects (범용토양유실공식의 유역단위 및 개발사업에 대한 적용방안 검토 및 보완에 관한 연구)

  • Woo, Won Hee;Chae, Min Suh;Park, Jong-Yoon;Lee, Hanyong;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.29-42
    • /
    • 2023
  • Universal Soil Loss Equation (USLE) is suggested and employed in the policy to conserve soil resources and to manage the impact of development, since soil loss is very essential to nonpoint source pollution management. The equation requires only five factors to estimate average annual potential soil loss, USLE is simplicity provides benefits in use of the equation. However, it is also limitation of the model, since the estimated results are very sensitive to the five factors. There is a need to examine the application procedures. Three approaches to estimate potential soil loss were examined, In the first approach, all factors were prepared with raster data, soil loss were computed for each cell, and sum of all cell values was determined as soil loss for the watersheds. In the second approach, the mean values for each factor were defined as representing USLE factors, and then the five factors were multiplied to determine soil loss for the watersheds. The third approach was same as the second approach, except that the Vegetative and Mechanical measure was used instead of the Cover and management factor and Support practice factor. The approaches were applied in 38 watersheds, they displayed significant difference, moreover no trends were detected for the soil loss at watersheds with the approaches. Therefore, it was concluded that there is a need to be developed and provided a typical guideline or public systems so that soil loss estimations have consistency with the users.

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (Ill) - Analysis of Principal Factor for Loss Reduction of Rapeseed Mechanical Harvesting - (보통형 콤바인 부착용 유채 예취장치 개발 (III) - 유채 기계 수확 손실 절감을 위한 요인 구명 -)

  • Lee, C.K.;Choi, Y.;Jun, H.J.;Lee, S.K.;Moon, S.D.;Kim, S.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Field test was conducted to investigate primary factors reducing rapeseed harvesting using a reciprocating cutter-bar of combine. The results showed that the correlation between crop moisture content and yield loss had a U-type, which indicated that the yield reduction increased at too high and too low crop moisture contents. The proper ranges of crop moisture contents were 27${\sim}$35%, 21${\sim}$56%, and 62${\sim}$73% in case of grain, pod and stem, respectively. Crop moisture content was negatively correlated with header loss, but positively correlated with threshing loss. In contrary, stem moisture content showed positive correlations with total loss, threshing loss and separation loss. Working speed was positively correlated with header loss. Total flow rate, pod flow rate and stem flow rate were highly correlated with threshing loss and separation loss. However, grain flow rate did not show any correlation with total loss. According to the principal component analysis, two principal components were derived as components with eigenvalues greater than 1.0. The contribution rates of the first and the second components were 52.7% and 38.9%, which accounted for 91.6% of total variance. As a contributive factor influencing total loss of rapeseed mechanical harvesting, a crop moisture content factor was greater than a crop flow rate factor. The stepwise multiple regression analysis for total loss was conducted using crop moisture content factor, crop flow rate factor and coefficient. However, the model did not show any correlation among independent and dependent factors ($R^2$=0.060).

An Experimental Study on the Measurement of Elastic and Damping Coefficients of a Composite Material (복합재의 탄성 및 감쇠계수 측정을 위한 실험연구)

  • Park, Han-Il;Shon, Jae-Geon;Min, Cheon-Hong;Bae, Soo-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.26-31
    • /
    • 2007
  • Understanding viscoelastic properties of composite materials is essential for the design and analysis of composite structures. Specially, the loss factor and Young's modulus must be known to develop finite element codes for a composite structure with several damping materials. In this study, an advanced technique for obtaining accurate loss factor and Young's modulus of a composite structure is introduced based on the method of American Society for Testing and Materials (ASTM). The loss factor and Young's modulus of a composite structure are measured for different temperatures by performing the test in a vibration measurement room where temperature can be controllable from 5 to 45 Celsius.

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

A Study on LEE Model Application for Propagation Loss Estimation of UHF band in Mountain Area (산악지형에서의 UHF대역 전파손실예측을 위한 LEE모델 적용방안 연구)

  • Lee, Changwon;Jeon, Yongchan;Shin, Imseob;Kim, Jin-Goog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we have compared some radio propagation models in order to verify the performance of W.C.Y LEE propagation model in mountain area. The four propagation models, which are Okumura-Hata, ITU-R P.525, Egli and W.C.Y. LEE, are analyzed by comparing the differences between measured values and propagation loss estimation values. And a correction method for W.C.Y LEE model is suggested to improve the performance of W.C.Y. LEE model with measured data in mountain area. Simulation results show that the estimation error using W.C.Y LEE model is the lowest among four propagation models. Also, the results show that the corrected W.C.Y LEE model with suggested method improves the performance of propagation loss estimation.

Rainfall Erosion Factor for Estimating Soil Loss (토양유실량 여측(予測)을 위한 강우인자(降雨因子)의 분석(分析))

  • Jung, Pil-Kyun;Ko, Mun-Hwan;Im, Jeong-Nam;Um, Ki-Tae;Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.112-118
    • /
    • 1983
  • Rainfall factor (R-factor), which is an index for the prediction of soil erosion in the Universal Soil Loss Equation (USLE), was computed from 21 years rainfall data at 51 locations in Korea. The values of R-factor are from 200 to 300 in the eastern part, and 300 to 700 in the western and southern part of the peninsula. Curvilinear regressions exist between annual rainfall and annual R-factor or between monthly rainfall and monthly R-factor. The R-factor can be estimated from the regression equation as a function of the amount of rainfall. According to the comparison between the actual soil loss measured by lysimeter and the soil loss predicted by the USLE, EI 30 for R-factor was recognized as a suitable factor for the USLE in korea.

  • PDF

The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market (무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용)

  • 박종배;이기송;신중린;김성수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.

Estimation of R-factor for Universal Soil Loss Equation with Monthly Precipitation Data in North Korea (북한 지역의 월 강수량으로부터 토양 유실 예측 공식 적용을 위한 강수 인자 산출)

  • Jeong, Yeong-Sang;Park, Cheol-Soo;Jeong, Pil-Kyun;Im, Jung-Nam;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.87-92
    • /
    • 2002
  • Soil erosion is detrimental to sustain soil productivity in north Korea, since agriculture of this country depends largely upon the slope land in mountainous area. Taking any measure for protection from erosion should be based on prediction of soil loss. Estimation of rainfall factor, R, in north Korea for the Universal Soil Loss Equation was attempted. The monthly precipitation data of the twenty six locations provided by the Korean Meteorological Adminstration were used. From the relationship between II_30 and the July-August precipitation concentration percents, the regional adjustment factor was obtained. The rainfall factor was calculated with the monthly precipitation data and the regional adjustment factor. The annual precipitation in north Korea ranged from 606 to 1,520mm, and the July-August precipitation concentration percents were 34.4 to 53.8. The regional adjustment factor ranged from 0.53 to 1.33 showing lower value in the highland and east coastal region than in the mid mountainous inland and west region. The R-factor value estimated from the monthly precipitation and the regional adjustment factor ranged from 107 to 483, which was lower than average value in south Korea.