• Title/Summary/Keyword: loss calculation

Search Result 759, Processing Time 0.022 seconds

A Study on the Local Boiling of the Consolidated Spent Fuel Storage Pool (조밀화된 사용후 핵연료 저장조에서의 국부 비등에 관한 연구)

  • Lee, Chang-Ju;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-19
    • /
    • 1993
  • The natural convection model of the consolidated system has been developed to make sure the removal of decay heat generated in the spent fuel for the loss of forced cooling accident. The numerical technique employed was based on the ADI scheme. The calculation of heat generation rate in the spent fuel was peformed by the ANS-79 decay heat model, and the nonuniform surface heat flux is assumed with a chopped sine curve for the conservative decay heat generation input. The sensitivity study was performed to examine the possibility of the pool bulk boiling by varying the various parameters, i.e. inter-fuel spacing ratio, heat generation power, and radius of the fuel rod. The application results of this model show that the natural circulation flow through compacted spent fuel bundles enables the pool temperature to control in a safe and effective manner, after the required cooling time. The corresponding acceptance criteria of the cooling time for rearranging the spent fuel rods were also found.

  • PDF

SECOND ATLAS DOMESTIC STANDARD PROBLEM (DSP-02) FOR A CODE ASSESSMENT

  • Kim, Yeon-Sik;Choi, Ki-Yong;Cho, Seok;Park, Hyun-Sik;Kang, Kyoung-Ho;Song, Chul-Hwa;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.871-894
    • /
    • 2013
  • KAERI (Korea Atomic Energy Research Institute) has been operating an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), for transient and accident simulations of advanced pressurized water reactors (PWRs). Using ATLAS, a high-quality integral effect test database has been established for major design basis accidents of the APR1400 plant. A Domestic Standard Problem (DSP) exercise using the ATLAS database was promoted to transfer the database to domestic nuclear industries and contribute to improving a safety analysis methodology for PWRs. This $2^{nd}$ ATLAS DSP (DSP-02) exercise aims at an effective utilization of an integral effect database obtained from ATLAS, the establishment of a cooperation framework among the domestic nuclear industry, a better understanding of the thermal hydraulic phenomena, and an investigation into the possible limitation of the existing best-estimate safety analysis codes. A small break loss of coolant accident with a 6-inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating interests from participants. This DSP exercise was performed in an open calculation environment where the integral effect test data was open to participants prior to the code calculations. This paper includes major information of the DSP-02 exercise as well as comparison results between the calculations and the experimental data.

A Study on Protection of Generator Asynchronization by Impedance Relaying (임피던스 계전기를 이용한 발전기 비동기 투입 보호 연구)

  • Lee, Jong-Hweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2000-2006
    • /
    • 2011
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. Where calculation method of protection settings and Logic for Protection of Generator Asynchronization will be recommended, A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection this paper describes an improved backup protection coordination scheme using a new Logic that will be suggested.

On Robust MMSE-Based Filter Designs for Multi-User Peer-to-Peer Amplify-and-Forward Relay Systems (증폭 및 전달 릴레이 기반 다중 사용자 피어투피어 통신 시스템에서 강인한 MMSE 필터 설계 방법)

  • Shin, Joonwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.798-809
    • /
    • 2013
  • In this paper, we propose robust relay and destination filter design methods for the multi-user peer-to-peer amplify-and-forward relaying systems while taking imperfect channel knowledge into consideration. Specifically, the relay and destination filter sets are developed to minimize the sum mean-squared-error (MSE). We first present a robust joint optimum relay and destination filter calculation method with an iterative algorithm. Motivated by the need to reduce computational complexity of the iterative scheme, we then formulate a simplified sum MSE minimization problem using the relay filter decomposability, which lead to two robust sub-optimum non-iterative design methods. Finally, we propose robust modified destination filter design methods which require only local channel state information between relay node and a specific destination node. The analysis and simulation results verify that, compared with the optimum iterative method, the proposed non-iterative schemes suffer a marginal loss in performance while enjoying significantly improved implementation efficiencies. Also it is confirmed that the proposed robust filter design methods provide desired robustness in the presence of channel uncertainty.

The Influence of Air Cavity on Interface Doses for Photon Beams (X선치료 조사야 내 공동의 존재에 따른 선량분포의 측정)

  • Chung Se Young;Kim Young Bum;Kwon Young Ho;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • When a high energy photon beam is used to treat lesions located in the upper respiratory air passages or in maxillary sinus, the beams often must traverse an air cavity before it reaches the lesion. Because of this traversal of air, it is not clear that the surface layers of the lesion forming the air-tumor tissue interface will be in a state of near electronic equilibrium; if they are not, underdosing of these layers could result. Although dose corrections at large distances beyond an air cavity are accountable by attenuation differences, perturbations at air-tissue interfaces are complex to measure or calculate. This problem has been investigated for 4MV and 10MV X-ray beams which are becoming widely available for radiotherapy with linear accelerator. Markus chamber was used for measurement with variouse air cavity geometries in X-ray beams. Underdosing effects occur at both the distal and proximal air cavity interface. The magnitude depended on geometry, energy, field sizes and distance from the air-tissue interfaces. As the cavity thickness increased, the central axis dose at the distal interface decreased. Increasing field size remedied the underdosing, as did the introduction of lateral walls. Fellowing a $20{\times}2{\times}2\;cm^3$\;air\;cavity,\;4{\times}4\;cm\;field\;there\;was\;an\;11.5\%\;and\;13\%\;underdose\;at\;the\;distal\;interface,\;while\;a\;20{\times}20{\times}2\;cm^3\;air\;cavity\;yielded\;a\;24\%\;and\;29\%$ loss for the 4MV and 10MV beams, respectively. The losses were slightly larger for the 10MV beams. The measurements reported here can be used to guide the development of new calculation models under non-equilibrium conditions. This situation is of clinical concern when lesions such as larynx and maxillary carcinoma beyond air cavities are irradiated.

  • PDF

Study on Leading-phase Operation Capability of a 770 MW Jumbo Hydro-generator based on Stability Analysis and End-Region Heat Analysis

  • Fan, Zhen-nan;Zhou, Zhi-ting;Li, Jian-fu;Wen, Kun;Wang, Jun;Sun, Zhang;Wang, Tao;Yao, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1317-1325
    • /
    • 2018
  • A generator-grid coupling calculation model is established to study the leading-phase operational capability of a 770 MW jumbo hydro-generator in a Chinese ultra-mega hydropower station. The static and dynamic stability of the generator are analyzed and calculated to obtain stability limits under leading-phase operating conditions. Three-dimensional (3D) time-varying nonlinear moving electromagnetic and temperature field models of the generator end-region are also established and used to determine the magnetic field, loss, and temperature of the end-region under the leading-phase operating condition. The simulation results agree with data measured from the actual 770 MW hydro-generator. This paper provides reliable reference data for the leading-phase operation of a jumbo hydro-generator, which will help to improve in the design and manufacture of future hydro-generators.

Fault Diagnosis of 3 Phase Induction Motor Drive System Using Clustering (클러스터링 기법을 이용한 3상 유도전동기 구동시스템의 고장진단)

  • Park, Jang-Hwan;Kim, Sung-Suk;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.70-77
    • /
    • 2004
  • In many industrial applications, an unexpected fault of induction motor drive systems can cause serious troubles such as downtime of the overall system heavy loss, and etc. As one of methods to solve such problems, this paper investigates the fault diagnosis for open-switch damages in a voltage-fed PWM inverter for induction motor drive. For the feature extraction of a fault we transform the current signals to the d-q axis and calculate mean current vectors. And then, for diagnosis of different fault patterns, we propose a clustering based diagnosis algorithm The proposed diagnostic technique is a modified ANFIS(Adaptive Neuro-Fuzzy Inference System) which uses a clustering method on the premise of general ANFIS's. Therefore, it has a small calculation and good performance. Finally, we implement the method for the diagnosis module of the inverter with MATLAB and show its usefulness.

Research on the Prevention of Major Industrial Accident By Integrated Risk Management System (중대산업사고 예방을 위한 종합위험관리체제(IRMS) 구축에 관한 연구)

  • Kwon, Hyuck-Myun;Seong, Dae-Hyun;Kim, Jae-Hyun;Yim, Dae-Sik;Kim, Gi-Young;Pyeon, Mu-Wook;Moon, Il;Ko, Jae-Wook;Lee, Young-Soon;Yoon, En-Sup
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.88-93
    • /
    • 2003
  • The Process Safety Management (PSM) by the Law of Industry, Safety and Health has been performed for preventing major accidents of chemical plants since 1996. In terms of preventing chemical accidents more precisely, it is essential to develop a tool for quantitative risk assessment. For this, KOSHA (Korea Occupational Safety and Health Agency) developed an Integrated Risk Management System (IRMS). The system is designed to assimilate data on chemical plant hazards from external database, to integrate these data with location information(topographic and demographic), and to make them user-friendly accessible. The system consists of several main functions: display of five major Korean petrochemical complex layout display of equipment layout with its information utilizing the external database, zonation of the hazard effected area with consequence analyses, the most probable accident scenario generation, accident/incident database and calculation of frequency of accident using equipment reliability database, etc. The highlight of IRMS is to provide the risk contours using GIS(Geographical Information System) technology. IRMS is intended to manage hazardous installation more systematically and effectively, to reduce the number of accident remarkably, further minimizing production loss in the plant. The system is now under application to about 500 PSM sites as well as and emergency authorities in Korea by KOSHA (Korea Occupational Safety and Health Agency)

A Study of Threat Evaluation using Learning Bayesian Network on Air Defense (베이지안 네트워크 학습을 이용한 방공 무기 체계에서의 위협평가 기법연구)

  • Choi, Bomin;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.715-721
    • /
    • 2012
  • A threat evaluation is the technique which decides order of priority about tracks engaging with enemy by recognizing battlefield situation and making it efficient decision making. That is, in battle situation of multiple target it makes expeditious decision making and then aims at minimizing asset's damage and maximizing attack to targets. Threat value computation used in threat evaluation is calculated by sensor data which generated in battle space. Because Battle situation is unpredictable and there are various possibilities generating potential events, the damage or loss of data can make confuse decision making. Therefore, in this paper we suggest that substantial threat value calculation using learning bayesian network which makes it adapt to the varying battle situation to gain reliable results under given incomplete data and then verify this system's performance.

Design of electrodes in the Patterned Vertical Aligned Liquid Crystal Cell for high optical performance (수직배향액정셀에서의 광학특성향상을 위한 전극설계)

  • Lee, Wa-Ryong;Kim, Kyung-Mi;Lee, Gi-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.344-348
    • /
    • 2007
  • In this paper, we propose the electrode of the Patterned Vertical Aligned (PVA) cell [1] for high transmittance. We use the 'TechWiz LCD' for calculation of the director configuration and optical characteristics to ensure the results of the proposed electrode structure. In general, the transmittance of the PVA cell depends on the shape of the electrode and cell gap. In this work the width of gate line and data line of the improved electrode design is set to be equal to that of the PVA conventional. Instead, we modified the shape of the top and bottom electrode on order to decrease the area of the defect. For verification, we compared the calculated optical transmittance of the PVA cell with the proposed electrode structure to the conventional PVA cell . As a result, we can confirm that the optical loss due to the variation of the retardation the LC cell around electrode can be definitely decreased by the proposed electrode.