• Title/Summary/Keyword: loss calculation

Search Result 759, Processing Time 0.026 seconds

Manufacturing Information Calculation System for Production Automation of 3-dimensional Template Used to Evaluate Shell Plate Completeness (선체 곡판 완성도 평가용 3차원 곡형의 제작 자동화를 위한 생산 정보 산출 시스템)

  • Ryu, Cheolho;Son, Seunghyeok;Shen, Huiqiang;Kim, Youngmin;Kim, Byeongseop;Jung, ChangHwan;Hwang, InHyuck;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.136-143
    • /
    • 2018
  • 3-D templates are produced to evaluate completeness of the shell plates during the forming process, which is an essential step for the ship production. They are mostly produced in advance during the detail/production design stage, but occasionally they are requested by the shell plate forming department, because it is impossible to predict accurately the necessities of them at the design stage. This results in a huge loss of man-hour and a bottleneck. In order to resolve this issue while reducing the dependence on other department, the process of manufacturing the 3-D templates needs to be automated. Therefore, this study proposes an automatic system that calculates the manufacturing information of the 3-D templates with only geometric information of the shell plates. The system considers the thickness and the cutting method of the parts of the 3-D templates and some options are provided to reflect the intention of the worker.

Numerical Analysis of Single Phase Thermal Stratification in both Cold Legs and Downcomer by Emergency Core Cooling System Injection : A Study on the Necessity to Consider Buoyancy Force Term (비상노심냉각계통 주입에 따른 저온관 및 강수관에서 단상 열성층 수치해석 : 부력항 고려 필요성에 관한 연구)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.654-662
    • /
    • 2017
  • When emergency core cooling system (ECCS) is operated during loss of coolant accident (LOCA) in a pressurized water reactor (PWR), pressurized thermal shock (PTS) phenomenon can occur as cooling water is injected into a cold leg, mixed with hot primary coolant, and then entrained into a reactor vessel. Insufficient flow mixing may cause temperature stratification and steam condensation. In addition, flow vibration may cause thermal stresses in surrounding structures. This will reduce the life of the reactor vessel. Due to the importance of PTS phenomenon, in this study, calculation was performed for Test 1 among six types of OECD/NEA ROSA tests with ANSYS CFX R.17. Predicted results were then compared to measured data. Additionally, because temperature difference between the hot coolant at the inlet of the cold leg and the cold cooling water at the inlet of the ECCS injection line is 200 K or more, buoyancy force due to density difference might have significant effect on thermal-hydraulic characteristics of flow. Therefore, in this study, the necessity to include buoyancy force term in governing equations for accurate prediction of single phase thermal stratification in both cold legs and downcomer by ECCS injection was numerically studied.

Fast Fuzzy Inference Algorithm for Fuzzy System constructed with Triangular Membership Functions (삼각형 소속함수로 구성된 퍼지시스템의 고속 퍼지추론 알고리즘)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Almost applications using fuzzy theory are based on the fuzzy inference. However fuzzy inference needs much time in calculation process for the fuzzy system with many input variables or many fuzzy labels defined on each variable. Inference time is dependent on the number of arithmetic Product in computation Process. Especially, the inference time is a primary constraint to fuzzy control applications using microprocessor or PC-based controller. In this paper, a simple fast fuzzy inference algorithm(FFIA), without loss of information, was proposed to reduce the inference time based on the fuzzy system with triangular membership functions in antecedent part of fuzzy rule. The proposed algorithm was induced by using partition of input state space and simple geometrical analysis. By using this scheme, we can take the same effect of the fuzzy rule reduction.

Design of the Electromagnetic Coupling Wideband Microstrip Antenna using FDTD Method (FDTD 법을 이용한 광대역 전자기 결합 마이크로스트립 안테나의 설계)

  • Jang, Yong-Woong;Shin, Ho-Sub;Kim, Nam;Park, Ik-Mo;Shin, Chull-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.473-482
    • /
    • 1998
  • In this paper, characteristics of the wide band microstrip antennas with parasistic element are analyzed by the Finite Difference Time Domain(FDTD) method, and antenna parameters are optimized to get maximum bandwidth, retern loss, input impedance, and radiation pattern are calculated by Founier transforming the time domain results. The characteristics of the antenna are varied and the bandwidth of the antenna is broaded as a length and a width of the driven element, a gap of the driven element and the parasitic element, a width and a length of parasitic element. So the different patchs are resonating at different frequencies and this multipule resonance increase the bandwidth. The Results of the calculation and measurement, the size of the antenna with parasitic element is about a twice larger than a microstrip antenna, but bandwidth is four times better than a microstrip antenna. And these results were in relatively good accordance with the measured values.

  • PDF

Design of Broadband Spiral Antenna for a Portable Non-Linear Junction Detector System (휴대형 NLJD용 광대역 스파이럴 안테나의 설계)

  • Kim, Jeong-Won;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.36-46
    • /
    • 2013
  • This paper proposes the design of broadband spiral antenna for a potable non-linear junction detector (NLJD) system. To realize the broadband antenna design, it was considered optimization of the number of spiral turns by iteration calculation. Ground plane with the Archimedean spiral slit to keep the same current distribution between radiating plane and ground is considered for circular polarization design. In order to realize high directivity and high gain of the proposed antenna, the cavity wall and the metal cap which is located on back of ground plane were also considered in design. Measurement results of return loss were agreed well with VSWR 2:1 at interested frequency band among 2.4 to 2.44 GHz, 4.84 to 4.92 GHz and 7.28 to 7.36 GHz. Measured axial ratio was observed 3 dB below and showed reasonable agreement with simulation results. Characteristics of the RHCP(Right Hand Circular Polarization) with the measured gain of 6.8 dBi above at interested frequency band were also observed.

A Study on the Link Cost Estimation for Data Reliability in Wireless Sensor Network (무선 센서 네트워크에서 데이터 신뢰성을 위한 링크 비용 산출 방안에 관한 연구)

  • Lee, Dae-hee;Cho, Kyoung-woo;Kang, Chul-gyu;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.571-573
    • /
    • 2018
  • Wireless sensor networks have unbalanced energy consumption due to the convergence structure in which data is concentrated to sink nodes. To solve this problem, in the previous research, the relay node was placed between the source node and the sink node to merge the data before being concentrated to the sink node. However, selecting a relay node that does not consider the link quality causes packet loss according to the link quality of the reconfigured routing path. Therefore, in this paper, we propose a link cost calculation method for data reliability in routing path reconfiguration for relay node selection. We propose a link cost estimation formula considering the number of hops and RSSI as the routing metric value and select the RSSI threshold value through the packet transmission experiment between the sensor modules.

  • PDF

Linear Stability Analysis for Combustion Instability in Solid Propellant Rocket (고체추진 로켓의 선형 안정성 요소에 대한 연구)

  • Kim, Hakchul;Kim, Junseong;Moon, Heejang;Sung, Honggye;Lee, Hunki;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2013
  • Linear stability analysis for combustion instability within a cylindrical port of solid rocket motor has been conducted. The analysis of acoustic energy has been performed by a commercial COMSOL code to obtain the mode function associated to each acoustic mode prior to the calculation of stability alpha. An instability diagnosis based on the linear stability analysis of Culick is performed where special interests have been focused on 5 stability factors(alpha) such as pressure coupling, nozzle damping, particle damping and additionally, flow turning effect and viscous damping to take into account the flow and viscosity effect near the fuel surface. The instability decay characteristics depending on the particle size is also analyzed.

Analysis of Shadows Effect in Seoul Area for the Estimation of Roof-type PV Power Calculation (지붕형 태양광 발전량 산정을 위한 서울지역 그림자 효과 분석)

  • Yun, ChangYeol;Jung, BoRin;Kim, ShinYoung;Kim, ChangKi;Kim, JinYoung;Kim, HyunGoo;Kang, YongHeack;Kim, YongIl
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • For the preliminary step for estimating the performance of roof-type photovoltaic system in urban areas, we analyzed the solar radiation reduction ratio by shadow effect by buildings using DSM (Digital Surface Model) and GIS (Geographical Information System) tools. An average loss by the shadow is about 19% in Seoul. The result was related to the building density and distribution. Monthly results show that the winter season (December and January) was more affected by the shading than during the summer season (June and July). It is expected that useful empirical formulas can be made if more detailed correlation studies are performed.

A Study on Error Reduction of Indoor Location Determination using triangulation Method and Least Square Method (삼각측량법과 최소자승법을 활용한 실내 위치 결정의 산포 감소 방안에 관한 연구)

  • Jang, Jung-Hwan;Lee, Doo-Yong;Zhang, Jing-Lun;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.217-224
    • /
    • 2012
  • Location-Based Services(LBS) is a service that provide location information by using communication network or satellite signal. In order to provide LBS precisely and efficiently, we studied how we can reduce the error on location determination of objects such people and things. We focus on using the least square method and triangulation positioning method to improves the accuracy of the existing location determination method. Above two methods is useful if the distance between the AP and the tags can be find. Though there are a variety of ways to find the distance between the AP and tags, least squares and triangulation positioning method are wildely used. In this thesis, positioning method is composed of preprocessing and calculation of location coordinate and detail of methodology in each stage is explained. The distance between tag and AP is adjusted in the preprocessing stage then we utilize least square method and triangulation positioning method to calculate tag coordinate. In order to confirm the performance of suggested method, we developed the test program for location determination with Labview2010. According to test result, triangulation positioning method showed up loss error than least square method by 38% and also error reduction was obtained through adjustment process and filtering process. It is necessary to study how to reduce error by using additional filtering method and sensor addition in the future and also how to improve the accuracy of location determination at the boundary location between indoor and outdoor and mobile tag.

3-Dimensional Analysis of the Steam-Hydrogen Behavior from a Small Break Loss of Coolant Accident in the APR1400 Containment

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong;Lee Unjang;Royl P.;Travis J. R.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.24-35
    • /
    • 2004
  • In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management