• 제목/요약/키워드: loss calculation

검색결과 759건 처리시간 0.027초

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

LNG 운반선용 증기터빈 고압단의 성능해석 (Performance Analysis of HP Steam Turbines. of LNG Carriers)

  • 박종후;정경남;김양익;조성희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2006
  • A steam turbine is one of propulsion systems of a LNG carrier, which consists of high pressure (HP) and low pressure (LP) turbines. In order to obtain high power, each one has the form of a multi-stage turbine. Especially, the first stage of a HP turbine is Curtis stage and uses partial admission considering the turbine efficiency. The performance of a HP turbine can be predicted by a mean-line analysis method, because the relatively large value of hub-tip ratio makes the three-dimensional losses small. In this study, a performance analysis method is developed for a multi-stage HP turbine using Chen's loss model developed for the transonic steam turbines. To consider the feature of partial admission, different partial admission models are reviewed, This analysis method can be used in partial load conditions as well as full load condition. The calculation results are also compared with the CFD results about some simple cases to check the accuracy of the program. Performance of two HP turbine models are calculated, and the calculation results are compared with the designed data. The comparison shows the qualitative performance analysis result.

  • PDF

CFD를 이용한 부분흡입형 터빈 공력형상 설계 (Aerodynamic Shape Design of a Partial Admission Turbine Using CFD)

  • 이은석
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1131-1138
    • /
    • 2006
  • Aerodynamic shape design of a partial admission turbine using CFD has been performed. Two step approaches are adopted in this study. Firstly, two-dimensional blade shape is optimized using CFD and genetic algorithm. Initially, the turbine cascade shape is represented by four design parameters. By controlling the design parameters as variables, the non-gradient search is analyzed for obtaining the maximum efficiency. The final two-dimensional blade proved to have a more blade power than the initial blade. Secondly, the three-dimensional CFD analysis including the nozzle, rotor and stator has been conducted. To avoid a heavy computational load due to an unsteady calculation, the frozen rotor method is implemented in steady calculation. The frozen rotor method can detect a variation of the flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a better idea of wake loss mechanism starting from the lip of the nozzle than the mixing plane concept. Finally, the combination of two and three dimensional design method of the partial admission turbine in this study has proven to be a robust tool in development phase.

ERP 시스템을 이용한 프로젝트 EVMS에 관한 연구 (A Study on Earned Value Management System (EVMS) For Project Using ERP System)

  • 박제원;이창호
    • 대한안전경영과학회지
    • /
    • 제12권4호
    • /
    • pp.145-151
    • /
    • 2010
  • It seems that a primary concern of the project-based company, which provides a large scale product or service over long term period, is to run a successful project through systematic project process control and control costs. One of the typical project control methods is Earned Value Management System(EVMS) which analyses the precess through performance measurement. Even though the EVMS is a highly efficient tool in the managerial aspect, it cannot easily determine the Planned Value(PV), Actual Cost(AC), or Earned Value(EV) due to the indistinct criteria and extensive data. The accurate calculation of AC in particular, is the basic of project management, but most companies record direct personnel expenses or direct expenses only. Since they calculate indirect expenses based on the estimated ratio, it limits the systematic project management that reflects changes in profit and loss of a company. This study introduces a EVMS for project management and its actual case based on EVMS and ERP system which some additional modules are installed for performance measurement. It is expected that this new method enables a company to save time and effort, and also to improve transparency by specifying expense items in detail and to switch quarterly settlement to monthly by reducing the time of calculation.

2차원 양자 역학적 해석에 의한 고속 통신용 $Al_{x}Gal{-x}As/Ga_{x}In1$_{-x}$As/GaAs HEMT 소자의 전자 농도 및 전위분포 계산 (Calculation of Electron concentration and Electrostatic potential profile for $Al_{x}Gal{-x}As/Ga_{x}In1$_{-x}$As/GaAs HEMT device by 2-Dimensional Quantum Mechanical analysis))

  • 송영진;황호정
    • 전자공학회논문지A
    • /
    • 제30A권3호
    • /
    • pp.76-87
    • /
    • 1993
  • We present a self-consistent, 2-dimensional solution of the Poisson and Sch rodinger equation based on the finite difference method with a nonuniform mesh size for a AlGaAs/GaInAs/GaAs HEMT devide. During the interative self-consistent calculation, however, we calculate Schrodinger equation only a some region of device, not a fully region in order to save the moemory and the speed-up of computation, and then use the approximated data for the other region using by a interpolation method with a given values. Also we adopt the proper matrix transformation method that allows preservation of the symmetric, form of the discretized Schrodinger equation, even with the use of a nonumiform mesh size, therefor, can reduce the computation time. We calculate the wavefunction, eigenstates and the electron concentration uat channel layer nder the thermal equilibrium and the biased conditions, respectively. Also,these parameters are used to solve 2-dimensional tdistribution of potential in he entire region of device. It is proved that the method is very efficient in finding eigenstages extending over relatively large spatial area without loss of accuracy. So, it can be used rather easily in any sarbitrary modulation doped utucture.

  • PDF

엑서지를 이용한 지역난방 열요금 제도 제안 (Suggestion for a New Exergy-Based Heat-Tariff Assessment for a District-Heating System)

  • 문정환;유호선;이재헌;문승재
    • 설비공학논문집
    • /
    • 제29권4호
    • /
    • pp.202-211
    • /
    • 2017
  • In this study, the exergy that can be reflected in the energetic and economic values was used to assess the heat tariff of a district heating (DH) system instead of the enthalpy. It is difficult to directly apply the exergy to the current heat-charge system because of the complicated calculation; therefore, the difference between the supply and return temperatures was converted to the exergy-temperature difference for the ease of the heat-amount calculation. As a result of the exergy analysis for a DH substation, the exergy-temperature difference did not affect the surrounding temperature and pressure loss. The supply temperature and the maximum difference between the supply temperature and the return temperature exerted the main effect on the exergy-temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with the previous charge, but the heat charges in the other seasons are almost the same. It is concluded from the assessment of the heat tariff for which the exergy is used that this tariff is more feasible for both DH suppliers and consumers compared with enthalpy.

해양도시내 분산전원의 최적 설치점 선정 (Positioning Algorithm considering Distributed Energy Resource of Ocean Side)

  • 성효성;장낙원;박정도;이성환;도근영;이정재
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 공동학술대회
    • /
    • pp.287-288
    • /
    • 2009
  • 분산발전원의 위치 변경에 따른 전력조류 및 송전전력 손실 평가를 통하여 도시차원에 적합한 발전원 설치점 선정 기법의 개발이 시급하다. 본 연구에서는 전력손실을 고려하여, 분산전원이 주변의 모선 및 선로에 미치는 영향을 최소화 할 수 있도록, 분산전원의 설치지점을 선정하는 방안을 제안한다.

  • PDF

Efficiency Optimization with a Novel Magnetic-Circuit Model for Inductive Power Transfer in EVs

  • Tang, Yunyu;Zhu, Fan;Ma, Hao
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.309-322
    • /
    • 2018
  • The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of $600mm{\times}400mm$.

구조용 압연강(SS 400)의 고온 기계적 특성을 이용한 기둥부재의 내화성능 평가 (Evaluation of Fire Resistance Using Mechanical Properties at High Temperature for Steel Column Made of Rolled Steels (SS 400))

  • 권인규;신순기
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.671-677
    • /
    • 2011
  • Steel columns used in steel buildings are inclined to lose their strength when exposed to severe fire conditions, so fire resistance is required in most countries to protect against loss of life and building collapses. In Korea, the fire resistance of columns can be obtained by the fire test defined in KS F 2257-1, 7. The fire resistance of a steel column should be evaluated in terms of the column's conditions, such as various section types (H-section, hollow-section), the column's length and boundary conditions, and whether it is fixed or hinged. However, fire testing of steel columns is usually conducted on one standard-sized H-section over 3,000 mm, and the result is used as the column's fire resistance. This is not a reasonable way to ensure that a building can withstand fire conditions. In this study, to evaluate the possibility of calculating the fire resistance of steel columns with material properties of high tensile strength of SS 400, both load-bearing fire tests and calculation of steel temperatures were carried out. The results of temperature calculation were very similar to those obtained by fire test.

IMO 피난지침 기반의 여객선 탈출시간 계산 프로그램 개발 (Development of an Evacuation Time Calculation Program for Passenger Ships Based on IMO Guidelines, MSC.1/Circ.1238)

  • 최진;김수영;신성철;강희진;박범진
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.719-724
    • /
    • 2010
  • Thousands of passengers and crews are onboard a cruise ship and there are many cabins and large public spaces such as atria and theaters. Therefore it is easy to cause a huge loss of life and damage to property when accidents happen at sea. To improve the safety of passenger ships, in October 2007, IMO proposed MSC.1/Circ.1238 on guidelines for evacuation analysis and recommended its use. However, this guideline is difficult to apply because ship designers need to get many pieces of information from CAD drawings such as width and length of stairs and corridors and manually calculate the evacuation time. In this paper, for practical application of the guidelines, an evacuation time calculation program is developed using AutoCAD .NET API library and C Sharp language.