• Title/Summary/Keyword: loss calculation

Search Result 759, Processing Time 0.028 seconds

Investigation of Loss Analysis Method using Integral Equation Method for Power Transformers (적분법을 이용한 전력용 변압기의 손실 해석법 연구)

  • Bae, Byunghyun;Lee, Seungwook;Choi, Jongung;Park, Seokweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.489-494
    • /
    • 2013
  • In analysis of power transformer loss using calculation of magnetic field, Finite element method is commonly used. When using this method, calculation of magnetic field needs the very large number of elements and the performance of common work station is not sufficient to calculate the magnetic fields. In addition, the definition of boundary conditions may arise. However, When using Integral equation method, only ferromagnetic materials need to be modeled, since the domain is infinite. All the space in which the primary and secondary sources exist is regarded as free(${\mu}={\mu}_0$).

Power Loss and Junction Temperature Analysis in the Modular Multilevel Converters for HVDC Transmission Systems

  • Wang, Haitian;Tang, Guangfu;He, Zhiyuan;Cao, Junzheng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.685-694
    • /
    • 2015
  • The power loss of the controllable switches in modular multilevel converter (MMC) HVDC transmission systems is an important factor, which can determine the design of the operating junction temperatures. Due to the dc current component, the approximate calculation tool provided by the manufacturer of the switches cannot be used for the losses of the switches in the MMC. Based on the enabled probabilities of each SM in an arm, the current analytical models of the switches can be determined. The average and RMS currents can be obtained from the corresponding current analytical model. Then, the conduction losses can be calculated, and the switching losses of the switches can be estimated according to the upper limit of the switching frequency. Finally, the thermal resistance model of the switches can be utilized, and the junction temperatures can be estimated. A comparison between the calculation and PSCAD simulation results shows that the proposed method is effective for estimating the junction temperatures of the switches in the MMC.

The Evaluation of Ship's Cruising Ability and Propulsive Performance in a Seaway (선박의 풍파중 항해능력 및 추진성능 평가에 관한 연구)

  • 김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.2
    • /
    • pp.15-31
    • /
    • 1990
  • Recently, there is a tendency to design the large full ships with lower-powered engine as the means for energy saving in ship's navigation at seas. Such a lower-powered ship is anticipated to show the different propulsive performance in rough seas, because the fluctuation of main engine load of lower powered ship is relatively large as compared with higher-powered ship is relatively large as compared with higher-powered ship. The fluctuation of propeller load is nonlinear at racing condition in waves. It is due to the variation of inflow velocity into propeller, the propeller immersion and the characteristics of engine governor. In this paper, the theoretical calculation of the nominal speed loss and the numerical simulation for the nonlinear load fluctuation of a model ship in rough seas are carried out. From the results of calculation, the following are discussed. (1) The ratio of nominal speed loss to the speed in still water. (2) The manoeuvring ability of ship and the operational ability of main engine in a seaway. (3) A method of the evaluation for the fluctuation of propeller torque and revolution on the engine characteristics plane. (4) The effect of engine governor characteristics on the propeller load fluctuation.

  • PDF

Core loss Calculation of a Permanent Magnetic Motor Considering Mechanical Stress (영구자석 전동기 철심의 기계적 응력을 고려한 철손 해석)

  • Kim, Ji-Hyun;Ha, Kyung-Ho;Kwon, Oh-Yeoul;Kim, Jae-Kwan;La, Min-Soo;Lee, Sun-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.851_852
    • /
    • 2009
  • Shrink fitting which is assembling process to fix stator core on the motor frame is widely used at the mass production line of motors because of cost and productivity. This process produces compressive stress on a stator core, which causes negative effect for example, core and copper losses on motor performance. Magnetic properties of electrical steel are effected by both compressive and tensile and thermal stresses. Electromagnetic field analysis is considered one of the effective process since one can predict motor performance including core loss precisely. This method can consider non linear magnetic property with magnetic saturation which is typical electrical steel behavior. However this method is strongly depended on non linear magnetic data, one may have different calculation result whether considering mechanical stress or not. This study describes magnetic field analysis of a motor considering mechanical stress from shrink fitting. Analysis results are compared with each stress-free and stressed condition.

  • PDF

Lubrication Modeling of Reciprocating Piston in Piston Pump with High Lateral Load (강한 측력이 작용하는 피스톤 펌프의 왕복동 피스톤 기구 부에서의 윤활모형에 관한 연구)

  • Shin, JungHun;Jung, DongSoo;Kim, KyungWoong
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.116-123
    • /
    • 2014
  • The objective of this study is to model and simulate the nonlinear lubrication performance of the sliding part between the piston and cylinder wall in a hydrostatic swash-plate-type axial piston pump. A numerical algorithm is developed that facilitates simultaneous calculation of the rotating body motion and fluid film pressure to observe the fluid film geometry and power loss. It is assumed that solid asperity contact, so-called mixed lubrication in this study, invariably occurs in the swash-plate-type axial piston pump, which produces a higher lateral moment on the pistons than other types of hydrostatic machines. Two comparative mixed lubrication models, rigid and elastic, are used to determine the reaction force and sliding friction. The rigid model does not allow any elastic deformation in the partial lubrication area. The patch shapes, reactive forces, and virtual local elastic deformation in the partial lubrication area are obtained in the elastic contact model using a simple Hertz contact theory. The calculation results show that a higher reaction force and friction loss are obtained in the rigid model, indicating that solid deformation is a significant factor on the lubrication characteristics of the reciprocating piston part.

Downlink Capacity Analysis of Distributed Antenna Systems with Imperfect Channel State Information

  • Xu, Weiye;Lin, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.253-271
    • /
    • 2017
  • In this paper, considering that perfect channel state information (CSI) is hard to achieve in practice, the downlink capacity of distributed antenna systems (DAS) with imperfect CSI and multiple receive antennas is investigated over composite Rayleigh fading channel. According to the performance analysis, using the numerical calculation, the probability density function (PDF) of the effective output SNR is derived. With this PDF, accurate closed-form expressions of ergodic capacity and outage probability of DAS with imperfect CSI are, respectively, obtained, and they include the ones under perfect CSI as special cases. Besides, the outage capacity of DAS in the presence of imperfect CSI is also derived, and a Newton's method based practical iterative algorithm is proposed to find the accurate outage capacity. By utilizing the Gaussian distribution approximation, another approximate closed-form expression of outage capacity is also derived, and it may simplify the calculation of accurate outage capacity. These theoretical expressions can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI. Simulation results verify the effectiveness of the theoretical analysis, and the system capacity can be improved by increasing the receive antennas, and decreasing the estimation error or path loss. Moreover, the system can tolerate the estimation error variance up to about 0.01 with a slight degradation in the capacity.

CFD Analysis of a Partial Admission Turbine Using a Frozen Rotor Method

  • Noh, Jun-Gu;Lee, Eun-Seok;Kim, Jinhan;Lee, Dae-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.861-866
    • /
    • 2004
  • A numerical flow analysis has been performed on the partial admission turbine of KARI turbopump to support the aerodynamic and structural dynamic assessments. The flow-field in a partial admission turbine is essentially three dimensional and unsteady because of a tip clearance and a finite number of nozzles. Therefore the mixing plane method is generally not appropriate. To avoid heavy computational load due to an unsteady three dimensional calculation, a frozen rotor method was implemented in steady calculation. It adopted a rotating frame in the grid block of a rotor blade by adding some source terms in governing equations. Its results were compared with a mixing plane method. The frozen rotor method can detect the variation of flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a idea of wake loss mechanism starting from the lip of a nozzle. This wake loss was assumed to be one of the most difficult issues in turbine designers. Thus, the frozen rotor approach has proven to be an efficient and robust tool in design of a partial admission turbine.

  • PDF

3D simulation of Heat transfer in MEMS-based microchannel (MEMS 로 제작된 마이크로 채널에서의 3 차원 열전달 해석)

  • Choi, Chi-Woong;Huh, Cheol;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1870-1875
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 $kg/m^2s$. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux.

  • PDF

The Problem of Engine Friction Test by Strip Down Method (스트립 다운에 의한 엔진 마찰 시험의 문제점)

  • Cho, Myung-Rae;Oh, Dae-Yoon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2429-2435
    • /
    • 2002
  • The aim of this paper is to investigate the problem of strip down method, which is usually used to evaluate the engine friction level. The validity of strip down method was investigated by theoretical analysis of friction in crank and piston assembly. The friction of cylinder and piston assembly was analyzed under the various test conditions. The measured cylinder pressure was used as boundary conditions of friction torque and loss calculation. The friction loss of crank and piston assembly was influenced by test conditions that resulted from the variation of load condition. From the results, we have known that the strip down method could be possible to distort the friction loss of engine moving components.

A Study on the New Distribution System of the Customer Inside (새로운 수용가내의 배전시스템에 대한 연구)

  • Park, Hyung-Joon;Kwon, Si-Hyun;Lee, Seung-Whan;Chung, Chan-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.229-232
    • /
    • 2004
  • This paper is about the new Distribution System of the electric customers. The Power loss in the Distribution System is disregarded and rarely managed so far. But, economically, this loss is not small quantity to Ignore. So, in this paper, we suggest that the new Distribution System of the electric customer by simply changing the locations of Power Transformer and other power facilities which is located inside of the customer. And we also show that the Power loss is decreased with this systematic changing by approximated calculation.

  • PDF