• 제목/요약/키워드: loop space

검색결과 554건 처리시간 0.026초

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • 제8권3호
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

철도 환경에서의 MIMO시스템의 응용 방안 (On the Application of MIMO systems for railway environment)

  • 이철진;황현철;조봉관;신승훈;곽경섭
    • 한국ITS학회 논문지
    • /
    • 제3권2호
    • /
    • pp.9-17
    • /
    • 2004
  • 본 논문에서는 이동 통신 시스템의 관점에서 철도 환경에 적용 가능한 MIMO 시스템을 고찰하였다. 먼저, 무선 통신 환경하에서 이동중인 열차와 기지국간의 무선 채널 환경의 특성을 분석하고, 이를 기지국이 선로 쪽에 있는 경우와 그렇지 않은 경우의 차이점을 비교하였다. 다음으로, 철도 환경의 열악한 무선 링크에 의한 성능 저하 문제를 해결하기 위하여 항후 적용 가능한 다중 안테나 시스템을 소개하고 이를 채널 용량과 다이버시티 추면에서 성능을 분석하였다. 특히, 다이버시티 기법 측면에서 폐루프 방식과 개루프 방식을 비교하며, 안테나간 상관도에 따른 이들 성능을 분석하였다. 마지막으로, 다중안테나 시스템을 철도 환경에 적용시킨 유럽의 ESCORT 프로젝트의 실험 결과를 비교하고 분석하였다.

  • PDF

LQG/LTR과 PID 기반의 무인항공기 슬렁-로드 수송 시스템의 제어기 설계 (LQG/LTR-PID based Controller Design of UAV Slung-Load Transportation System)

  • 이해인;유동완;이병윤;문건희;이동연;탁민제
    • 제어로봇시스템학회논문지
    • /
    • 제20권12호
    • /
    • pp.1209-1216
    • /
    • 2014
  • This paper copes with control design for unmanned aerial vehicle transportation system. Moving pendulum dynamics of slung-load system is derived using two methods: Udwadia-Kalaba equation and Newtonian approach. PID controller is applied to Udwadia-Kalaba equation model for structural consistency and linear quadratic Gaussian / Loop Transfer Recovery (LQG/LTR) technique is employed for Newtonian model with minimal state-space realization. Characteristics of PID and LQG/LTR controller are compared, and two controllers are combined to compensate the drawbacks of each other. Numerical simulation is set for two cases and conducted to evaluate performance of designed controllers. The result proves that combination of LQG/LTR and PID control performs stable and robust.

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

GPS/PCS 단말기용 듀얼밴드 내장형 안테나 (Dualband Internal Antenna for GPS/PCS Handset)

  • 정병운;이학용;이종철;김종헌;김남영;이병제;박면주
    • 한국전자파학회논문지
    • /
    • 제14권6호
    • /
    • pp.550-557
    • /
    • 2003
  • 본 논문에서는 GPS/PCS 단말기에 적합한 두 가지 형태의 듀얼밴드 내장형 안테나를 제안하였다. 먼저 기생 다이폴이 포함된 모노폴 안테나는 단말기 기판에 직접 인쇄가 가능하도록 설계하였고, 격자형 루프구조의 안테나는 단말기의 내부 공간을 최대한으로 활용하기 위하여 격자형으로 구부러진 형태로 디자인하여 단말기 내부 에 내장이 가능하도록 설계하였다. 제안된 두 가지 형태의 듀얼밴드 내장형 안테나의 대역폭은 정재파비 2:1 기준으로 최소 19.1 % 이상으로 GPS 대역과 PCS 대역을 동시에 만족할 수 있고 전 대역에서 -0.4 ㏈i~3.33 ㏈i의 만족할만한 이득을 얻었으며 방사패턴은 전 방향성에 가까움을 확인하였다.

WCDMA 시스템에서 송신 다이버시티 기법의 성능 비교 분석 (Comparative Performance Analysis of Transmit Diversity Technique for WCDMA Systems)

  • 이상호;김영선;박형래
    • 한국항행학회논문지
    • /
    • 제7권2호
    • /
    • pp.191-198
    • /
    • 2003
  • 본 논문에서는 3세대 이동통신시스템의 요소 기술인 송신 다이버시티 기법에 대한 성능 분석을 수행한다. WCDMA 시스템의 규격으로 채택된 송신 다이버시티 기법은 귀환 데이터의 유무에 따라 개루프 송신 다이버시티와 폐루프 송신 다이버시티로 나뉘어지며 DPCH 신호의 시공간 부호화를 통해 다이버시티 이득을 얻는다. 이러한 송신 다이버시티 기법의 성능 분석을 위해 WCDMA format #13을 목표 시스템으로 하여 이동속도, 경로 수, 파워 컨트롤, 귀환 데이터의 지연에 대한 영향을 컴퓨터 시뮬레이션을 통해 비교 분석한다.

  • PDF

System dynamics of scanning tunneling microscope unit

  • Yamada, Hikaru;Endo, Toshiro;Tsunetaka-Sumomogi;Fujita, Toshizo;Morita, Seizo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.794-797
    • /
    • 1988
  • G. Binnig and H. Rohrer introduced the Scanning Tunneling Microscope (STM) in 1982 and developed it into a powerful and not to be missed physical tool. Scanning tunneling Microscopy is a real space surface imaging method with the atomic or subatomic resolution in all three dimensions. The tip is scanned over the surface by two piezo translators mounted parallel (X-piezo and Y-piezo) to the surface and perpendicular to each other. The voltage applied to the third piezo (Z-piezo) translator mounted perpendicular to the surface to maintain the tunneling current through the gap at a constant level reflects then the topography of the surface. The feed back control loop for the constant gap current is designed using the automatic control technique. In the designing process of the feed back loop, the identification of the gap dynamics is very complex and has difficulty. In this research, using some suitable test signals, the system dynamics of the gap including the Z-piezo are investigated. Especially, in this paper, a system model is proposed for the gap and Z-piezo series system. Indicial response is used to find out the model. The driving voltage of the Z-piezo and the tunneling current are considered as input and output signals respectively.

  • PDF

전광파이버형 광파이버 자이로 (All-Fiber Optic Gyroscope)

  • 김인수;김요희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1840-1842
    • /
    • 1998
  • Gyroscope is a very important core sensor, as a rotation sensor in inertial space, in inertial guidance and navigation system on aeronautics, plane, vessel and so on for civilian and millitary applications. Mechnical gyroscopes, adopting a principle of spinning a top, have been used in many application system. These mechnical gyroscopes need high power consumption, long warming time and complicated peripheral devices. But fiber-optic gyroscopes, based on the Sagnac effect, have novel advantages as small volume. simple scheme, low power consumption and high reliability. So we have developed a Intermediate grade All-fiber Optic Gyroscope, which has open-loop and minimum reciprocal configuration scheme. We have designed feedback circuits for stability of amplitude and phase using four lock-in amplifier(LIA) circuits and also used for noise limitation. This paper describes the scheme of optical part and electronic part and also test results of this all-fiber optic gyroscope. The performance have been achieved as long-term bias drift of $9.54^{\circ}/h$, random walk of $0.0317^{\circ}/\sqrt{h}$ and dynamic range of ${\pm}150\;deg/s$.

  • PDF