• Title/Summary/Keyword: loop space

Search Result 554, Processing Time 0.03 seconds

Reduction of Number of Actuators for Independent Modal Space Control (독립모달공간 제어기법에서 작동기 수의 절감에 대한 연구)

  • 황재혁;김준수;박명호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.166-174
    • /
    • 1996
  • In this paper, a new modified independent modal space control(IMSC), which relaxes the fundamental hardware limitation of IMSC, is suggested to handle the vibration and attitude control problem for flexible large structures. This method has adapted a new switching algorithm between controlled modes and a novel design technique for modal control force. The main advantage of this method is to minimize the discontinuity of the modal control forces and to assure the asymptotic stability of the closed-loop systems. This process is shown to be simple and efficient in a realistic example of vibration control of a cantilever beam. It has been found that the modified IMSC suggested in this paper, which can reduce the number of actuators, is highly excellent compared to other previous methods in terms of the performance and stability of the vibration control systems.

  • PDF

A Systematic Review on Human Factors in Cybersecurity

  • Alghamdi, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.282-290
    • /
    • 2022
  • A huge budget is spent on technological solutions to protect Information Systems from cyberattacks by organizations. However, it is not enough to invest alone in technology-based protection and to keep humans out of the cyber loop. Humans are considered the weakest link in cybersecurity chain and most of the time unaware that their actions and behaviors have consequences in cyber space. Therefore, humans' aspects cannot be neglected in cyber security field. In this work we carry out a systematic literature review to identify human factors in cybersecurity. A total of 27 papers were selected to be included in the review, which focuses on the human factors in cyber security. The results show that in total of 14 identified human factors, risk perception, lack of awareness, IT skills and gender are considered critical for organization as for as cyber security is concern. Our results presented a further step in understanding human factors that may cause issues for organizations in cyber space and focusing on the need of a customized and inclusive training and awareness programs.

Extended Three Region Partitioning Method of Loops with Irregular Dependences (비규칙 종속성을 가진 루프의 확장된 세지역 분할 방법)

  • Jeong, Sam-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.3
    • /
    • pp.51-57
    • /
    • 2015
  • This paper proposes an efficient method such as Extended Three Region Partitioning Method for nested loops with irregular dependences for maximizing parallelism. Our approach is based on the Convex Hull theory, and also based on minimum dependence distance tiling, the unique set oriented partitioning, and three region partitioning methods. In the proposed method, we eliminate anti dependences from the nested loop by variable renaming. After variable renaming, we present algorithm to select one or more appropriate lines among given four lines such as LMLH, RMLH, LMLT and RMLT. If only one line is selected, the method divides the iteration space into two parallel regions by the selected line. Otherwise, we present another algorithm to find a serial region. The selected lines divide the iteration space into two parallel regions as large as possible and one or less serial region as small as possible. Our proposed method gives much better speedup and extracts more parallelism than other existing three region partitioning methods.

SDINS Closed Loop Self-Alignment Algorithm using Pseudo Initial Position (가상의 초기위치를 이용한 SDINS 폐루프 자체 정렬 알고리즘)

  • Kim, Taewon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.463-472
    • /
    • 2017
  • Inertial Navigation System Alignment is the process to determine direction cosine matrix which is the transformation matrix between the INS body frame and navigation frame. INS initial position value is necessary to INS attitude calculation, so that user should wait until he get such value to start the INS alignment. To remove the waiting time, we propose an alignment algorithm that immediately starts after the INS power on by using pseudo initial position input and then is completed with attitude error compensation by entering true position later. We analyse effect of INS sensor error on attitude in process of time and verify the performance and usefulness of the close-loop alignment algorithm which corrects attitude error from the change of initial position.

Throughput Improvement and Power-Interruption Consideration of Fly-By-Wire Flight Control Computer (비행제어 컴퓨터의 Throughput 향상 및 Power-Interuption 대처 설계)

  • Lee, Cheol;Seo, Joon-Ho;Ham, Heung-Bin;Cho, In-Je;Woon, Hyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.940-947
    • /
    • 2007
  • For the performance upgrade of a supersonic jet fighter, the processor and FLCC(Flight Control Computer) Architecture were upgraded from a baseline FLCC. Prior to the hardware implementation phase, the exact CPU throughput estimation is necessary. For this purpose, an experimental method for new FLCC throughput estimation was introduced in this study. While baseline FLCC operating, the CPU address bus was collected with logic analyzer, and then decoded to get the exact access times to each memory-memory and the number of program Instruction branches. Based on these data, a throughput test in CPU demo-board of the new FLCC configuration was performed. From test results, the CPU-Memory architecture was design-changed before FLCC hardware implementation phase. To check the flight stability degradation due to power-interrupt problem due to CPU-Memory architecture change, the piloted HILS (Hardware-In-the Loop Simulator) test was conducted.

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

COMS DATS Implementation and Test (통신해양기상위성 데이터 송수신 서브시스템의 구축 및 시험)

  • Park, Durk-Jong;Kim, Su-Jin;Ahn, Sang-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.459-470
    • /
    • 2008
  • DATS which is one of three subsystems of IDACS is responsible to receive Sensor Data, LRIT and HRIT in L-Band and transmit LRIT and HRIT in S-Band from/to COMS satellite. This paper shows detailed test procedures used to verify the performance and functionality of DATS after its implementation was completely finished. As a part of efforts to verify key DATS performance, G/T and EIRP were measured by using solar flux density as radio source. Regarding the verification of DATS functionality, RF loop-back test was conducted to validate if there is no BER degradation excepting MODEM/BB implementation loss occurred in the integrated DATS. Integrated with 13m antenna, DATS successfully restored image from received MTSAT-1R broadcasting data, LRIT and HRIT, of which frequencies are all L-Band. S-Band transmission was also verified through test antenna placed away from 13m antenna by measuring real LRIT and HRIT spectrum in S-Band. From those test results, DATS is determined to be fully ready to communicate with COMS in L-Band and S-Band.

Training Sample of Artificial Neural Networks for Predicting Signalized Intersection Queue Length (신호교차로 대기행렬 예측을 위한 인공신경망의 학습자료 구성분석)

  • 한종학;김성호;최병국
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2000
  • The Purpose of this study is to analyze wether the composition of training sample have a relation with the Predictive ability and the learning results of ANNs(Artificial Neural Networks) fur predicting one cycle ahead of the queue length(veh.) in a signalized intersection. In this study, ANNs\` training sample is classified into the assumption of two cases. The first is to utilize time-series(Per cycle) data of queue length which would be detected by one detector (loop or video) The second is to use time-space correlated data(such as: a upstream feed-in flow, a link travel time, a approach maximum stationary queue length, a departure volume) which would be detected by a integrative vehicle detection systems (loop detector, video detector, RFIDs) which would be installed between the upstream node(intersection) and downstream node. The major findings from this paper is In Daechi Intersection(GangNamGu, Seoul), in the case of ANNs\` training sample constructed by time-space correlated data between the upstream node(intersection) and downstream node, the pattern recognition ability of an interrupted traffic flow is better.

  • PDF

Control System of Turbofan Engine with Variable Inlet Guide Vane (가변 안내익을 이용한 터보팬 엔진 제어시스템)

  • Bae, Kyoungwook;Min, Chanoh;Cheon, Bongkyu;Lee, Changyong;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Surge phenomenon can be occurred in a compressor when the performance of turbofan engine for an aircraft is changed considerably such as take-off phase. This study is aimed to avoid surge phenomenon. This paper propose the PID and Fuzzy control System for the turbofan engine with control inputs, the VIGV(Variable Inlet Guide Vane) in closed loop, and the fuel mass flow in open loop. We design the Dynamic modeling, NPSS S-function, which is connection block of simulink between NPSS(Engine analysis program) and Simulink. Finally, we certify the performance to prevent a serge phenomenon in the VIGV control system using the both methods, PID and fuzzy.

Implementation of a very small 13.56[MHz] RFID Reader ensuring machine ID recognition in a noise space within 3Cm (3Cm 이내의 잡음 공간 속 기계 ID 인식을 보장하는 초소형 13.56[MHz] RFID Reader의 구현)

  • Park, Seung-Chang;Kim, Dae-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.27-34
    • /
    • 2006
  • This paper has implemented a very small($1.4{\times}2.8[Cm^2]$) 13.56[MHz] RFID reader ensuring machine ID recognition correctly in a noise space of Tag-to-Reader within 3Cm. For operation of the RFID system, at first, this paper has designed the loop antenna of a reader and the fading model of back-scattering on microwave propagation following to 13.56[MHz] RFID Air Interface ISO/IEC specification. Secondly, this paper has proposed the automatically path selected RF switching circuit and the firmware operation relationship by measuring and analyzing the very small RFID RF issues. Finally, as a very small reader main body, this paper has shown the DSP board and software functions made for extraction of $1{\sim}2$ machine ID information and error prevention simultaneously with carrying of 13.56[MHz] RFID signals that the international standard specification ISO/IEC 18000-3 defined.