• Title/Summary/Keyword: loop removal

Search Result 93, Processing Time 0.026 seconds

Mathematical approach for optimization of magnetohydrodynamic circulation system

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.654-664
    • /
    • 2019
  • The geometrical and electromagnetic variables of a rectangular-type magnetohydrodynamic (MHD) circulation system are optimized to solve MHD equations for the active decay heat removal system of a prototype Gen-IV sodium fast reactor. Decay heat must be actively removed from the reactor coolant to prevent the reactor system from exceeding its temperature limit. A rectangular-type MHD circulation system is adopted to remove this heat via an active system that produces developed pressure through the Lorentz force of the circulating sodium. Thus, the rectangular-type MHD circulation system for a circulating loop is modeled with the following specifications: a developed pressure of 2 kPa and flow rate of $0.02m^3/s$ at a temperature of 499 K. The MHD equations, which consist of momentum and Maxwell's equations, are solved to find the minimum input current satisfying the nominal developed pressure and flow rate according to the change of variables including the magnetic flux density and geometrical variables. The optimization shows that the rectangular-type MHD circulation system requires a current of 3976 A and a magnetic flux density of 0.037 T under the conditions of the active decay heat removal system.

ASSESSMENT OF CONDENSATION HEAT TRANSFER MODEL TO EVALUATE PERFORMANCE OF THE PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Cho, Yun-Je;Kim, Seok;Bae, Byoung-Uhn;Park, Yusun;Kang, Kyoung-Ho;Yun, Byong-Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.759-766
    • /
    • 2013
  • As passive safety features for nuclear power plants receive increasing attention, various studies have been conducted to develop safety systems for 3rd-generation (GEN-III) nuclear power plants that are driven by passive systems. The Passive Auxiliary Feedwater System (PAFS) is one of several passive safety systems being designed for the Advanced Power Reactor Plus (APR+), and extensive studies are being conducted to complete its design and to verify its feasibility. Because the PAFS removes decay heat from the reactor core under transient and accident conditions, it is necessary to evaluate the heat removal capability of the PAFS under hypothetical accident conditions. The heat removal capability of the PAFS is strongly dependent on the heat transfer at the condensate tube in Passive Condensation Heat Exchanger (PCHX). To evaluate the model of heat transfer coefficient for condensation, the Multi-dimensional Analysis of Reactor Safety (MARS) code is used to simulate the experimental results from PAFS Condensing Heat Removal Assessment Loop (PASCAL). The Shah model, a default model for condensation heat transfer coefficient in the MARS code, under-predicts the experimental data from the PASCAL. To improve the calculation result, The Thome model and the new version of the Shah model are implemented and compared with the experimental data.

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

Comparative evaluation of the effectiveness of ultrasonic tips versus the Terauchi file retrieval kit for the removal of separated endodontic instruments

  • Pruthi, Preeti Jain;Nawal, Ruchika Roongta;Talwar, Sangeeta;Verma, Mahesh
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.14.1-14.7
    • /
    • 2020
  • Objective: The aim of this study was to perform a comparative evaluation of the effectiveness of ultrasonic tips versus the Terauchi file retrieval kit (TFRK) for the removal of broken endodontic instruments. Materials and Methods: A total of 80 extracted human first mandibular molars with moderate root canal curvature were selected. Following access cavity preparation canal patency was established with a size 10/15 K-file in the mesiobuccal canals of all teeth. The teeth were divided into 2 groups of 40 teeth each: the P group (ProUltra tips) and the T group (TFRK). Each group was further subdivided into 2 smaller groups of 20 teeth each according to whether ProTaper F1 rotary instruments were fractured in either the coronal third (C constituting the PC and TC groups) or the middle third (M constituting the PM and TM groups). Instrument retrieval was performed using either ProUltra tips or the TFRK. Results: The overall success rate at removing the separated instrument was 90% in group P and 95% in group T (p > 0.05) The mean time for instrument removal was higher with the ultrasonic tips than with the TFRK (p > 0.05). Conclusion: Both systems are acceptable clinical tools for instrument retrieval but the loop device in the TFRK requires slightly more dexterity than is needed for the ProUltra tips.

Effect of Optical Delay on the Suppression of the Power Transient Excursion in a Combined Gain-Controlled Erbium-Doped Fiber Amplifier

  • Chung, Hee-Sang;Chang, Sun-Hyok;Park, Heuk;Lee, Hyun-Jae;Chu, Moo-Jung
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.531-534
    • /
    • 2003
  • This report describes the effect of optical delay on the suppression of the power transient excursion in a combined gain-controlled erbium-doped fiber amplifier with an internal optical feedback loop (OFL). A simple homogeneous model showed that the optical delay caused a phase change in the oscillation of the surviving and laser channels, which resulted in a reduction of the overall power transient excursion. In addition to the reduction, a real system with a 1528.7-nm OFL shifted the oscillation upward or downward according to channel removal or addition, whereas another one with a 1560.9-nm OFL did not. This different transient behavior reflected a control-wavelength dependence on optical automatic gain control, where spectral-hole burning dominated over relaxation oscillation for 1528.7 nm, and vice versa for 1560.9 nm.

  • PDF

A Scoping Analysis of Venting Capability During Loss of RHRS Events

  • Lee, Cheol-Sin;Han, Kee-Soo;Park, Chul-Jin;Kim, Hee-Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.657-662
    • /
    • 1996
  • Venting capability to prevent excess pressurization caused by loss of Residual Heat Removal System (RHRS) during mid-loop operation hat been evaluated analytically and the peak Reactor Coolant System (RCS) pressure was compared with the results of the MIDLOOP computer code. Even though analytical method if relatively simple, the results are in a good agreement with those of the computer code. For both methods, the peak pressures have not, exceeded the nozzle dam design pressure, if the vent paths such as pressurizer safety valves or a pressurizer manway are available in a closed RCS configuration with the nozzle dam installed.

  • PDF

An Investigation on the Computing Offsets of Free form Curve using the Biarc Approximation Method (이중원호 근사법을 이용한 자유형상곡선의 오프셋 계산에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.76-83
    • /
    • 2005
  • In this study a general method for computing offsets of free form curves is presented. In the method arbitrary free form curve is approximated with point series considering required tolerance. The point series are offset precisely using the normal vectors computed at each point and loop removal is carried out by the newly suggested algorithm. The resulting offset points are transformed to lines and arcs using the biarc approximation method. Tangent vectors for approximation of discrete points data are calculated by traditional local interpolation scheme. In order to show the validity and generality of the proposed method , various of offsettings are carried our for the base curves with complex shapes.

Proposal of CPC Function Improvement

  • Lee, Byung-Il;Kim, Jong-Jin;Baek, Seung-Su;Kim, Hee-Cheol;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.562-567
    • /
    • 1995
  • The concept of VLDT (Variable Low DNBR Trip), a new CPC trip function, was proposed and applied to the events of increase in secondary heat removal, such as an excess feedwater event anti an IOSGADV (Inadvertent Opening S/G Atmospheric Dump Valve). Major assumption used in this study was no time delay to LOOP (Loss of Offsite Power) after turbine trip. In case of using this VLDT function, safety criterion of DNB would not be violated under the same condition as previous analysis without any change in thermal margin.

  • PDF

The Removal of Arsenic from Contaminated Water using a Hybrid Membrane Process.

  • Legault, A.S.;Trembaly, A.Y.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.93-104
    • /
    • 1997
  • The objective of this study is to develop a method to reduce arsenic concentrations in contaminated water. This work is also aimed at increasing the specificity of membrane separation processes. Arsenic in contaminated waters is often present in the form of negatively charged oxyanions. These are relatively small molecules which cannot be separated directly by ultrafiltration. Oxyanions can be captured by polyelectrolytes and separated by ultrafiltration. Results will be presented on the use of two polyelectrolytes; polyethylenimine (PEI) and poly-diallyl dimethyl ammonium chloride (DADMAC) at various feed concentrations. A semi-continuous process utilizing PEI in a circulation loop was tested. The restfits indicate that better than 99.6 % recovery (permeate concentration < 0.001 $\mu$g/L) can be achieved based on an initial arsenic concentration of 300 $\mu$g/L. The results indicate that this treatment method is suitable as a main treatment process for drinking water or a polishing step after arsenic precipitation.

  • PDF

New capacitor switching schemes to control subsynchronous resonance (SSR을 제어하기 위한 새로운 캐패시터 스위칭방법에 관한 연구)

  • 이훈구;이승환;강승욱;한경희;정연택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • Subsynchronous resonance(SSR) causes a torsional shaft torque on the generator. Damages resulting from the uncontrolled SSR have resulted in the breakdown in the shaft and costs for replacement power. This paper is to determine the feasibility of controlling SSR by the fast modulation of series compensation capacitors. The presence of subsynchronous currents in the system was detected by a subsynchronous relay which was modeled by the transient analysis of control systems(TACS) in electromagnetic transients program (EMTP). The capacitor segments were switched by bi-directional thyristor switches. These were modeled into EMTP. The strategy to switch the capacitors were modeled as a closed loop system. The paper proves that effective control of SSR can be obtained only by the detuning of the system and the removal or blocking of subsynchronous energy from the system. (author). refs., figs., tabs.

  • PDF