• Title/Summary/Keyword: loop heat pipe

Search Result 99, Processing Time 0.031 seconds

Remote Nozzle Blocking Device of RCS Pipe during Mid-Loop Operation in Nuclear Power Plants

  • Kang, Ki-Sig;Lee, Se-Yub;Chi, Ham-Chung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.571-576
    • /
    • 1996
  • Currently most nuclear power plants(NPPs) are adopted the mid-loop operation to minimize the overhaul period and save the operating cost. For mid-loop operation it is essential to install nozzle dam between RCS pipe and steam generator(SG). Because SG remains more highly contaminated with radioactive material than any other parts of the NPPs, the repairmen are very reluctant to carry out installing nozzle dam inside the SG. Until now, unfortunately, it appears that no practically applicable device was developed to provide the longstanding demand. Also the accidents have been reported by licenser event report during this operation mode due to loss of residual heat removal(RHR). The purpose of this paper is to conduct remotely blocking and disintegration of nozzle of a SG which has the highest radiation exposure during the maintenance in NPPs. The remote nozzle blocking device of a SG includes three bladders, hubs, air controller provisions to supply and contact air pressure into the bladders. This remote nozzle block device will give the larger operation margin to prevent the loss of RHR and minimize the radiation exposure dose to the repairman and shorten the overhaul periods.

  • PDF

Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (헬리컬 코일관 내 초임계 $CO_2$의 압력강하 특성)

  • Yu, Tae-Geun;Kim, Dae-Hui;Roh, Geon-Sang;Ku, Hak-Geun;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.216-221
    • /
    • 2005
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a helically coiled tube were investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a double pipe type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a copper tube with the inner diameter of 4.85 [mm], the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were 200${\sim}$600 [kg/$m^2$s] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows: The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model (3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가)

  • Park, Moon-Seo;Lee, Chul-Ho;Min, Sun-Hong;Kang, Shin-Hyung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF

Convective Heat Transfer of Using an Ice Slurry in n circular pipe (아이스 슬러리의 원형관내 대류열전달에 관한 연구)

  • Jung, Dong-Ju;Choi, Eun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.130-135
    • /
    • 2000
  • To enhance heat transfer characteristics of water, fine ice was added to it. The convective heat transfer characteristics of the ice slurry were investigated in a flow loop with a constant heat flux test section. The Nusselt number and Fanning friction coefficient of water flow were found to be similar to the expected curve by Petukhov. The Nusselt number of the ice sin flow was higher than the Nusselt number of water. Effective thermal capacity of the 10.84% ice slurry was found to have 2.39 times of the thermal capacity of water.

  • PDF

Effect of grouts and pipe sections for closed-loop vertical ground heat exchanger on effective ground thermal conductivity (그라우트 종류와 열교환 파이프 단면에 따른 수직 밀폐형 지중열교환기의 지중 유효열전도도 평가)

  • Lee, Chulho;Park, Moonseo;Min, Sunhong;Kang, Shin-Hyung;Choi, Hangseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.167.1-167.1
    • /
    • 2010
  • 본 연구에서는 수직 밀폐형 지중열교환기 뒤채움용 그라우트의 종류와 첨가재 종류, 지중열교환기 파이프 단면에 따른 지중열교환기의 성능을 비교 평가하기 위해 현장 시험 시공과 현장 열응답 시험을 수행하였다. 뒤채움용 그라우트재는 벤토나이트와 시멘트를 사용하였으며 첨가제로는 천연규사와 흑연을 적용하였다. 지중열교환기 파이프 단면은 일반적으로 시공되는 U-loop 파이프 단면과 파이프 사이의 열간섭 효과를 최소화 한 3공형 파이프 단면이 적용되었다. 시멘트-천연규사 그라우트재가 벤토나이트-천연규사 그라우트재 보다 큰 지중 유효열전도도를 보이고 흑연을 첨가한 그라우트는 시멘트와 벤토나이트 모두에서 천연규사만 첨가하였을 때 보다 지중 유효열전도도가 높게 나타났다. 3공형 파이프 단면의 경우 단면에 따른 영향을 비교하기 위해 그라우트는 시멘트-천연규사와 벤토나이트-천연규사를 사용하였으며 지중 유효열전도도 측정결과 각각 3.64 W/mK, 3.40 W/mK으로 일반 U-loop 파이프 단면을 사용하였을 때 보다 높게 나타났다.

  • PDF

Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling (열원 냉각용 루프 써모사이폰의 작동 특성)

  • Choi, Du-Sung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

A Preliminary Analysis of Large Loss-of-Coolant Induced by Emergency Core Coolant Pipe Break in CANDU-600 Nuclear Power Plant

  • Ion, Robert-Aurelian;Cho, Yong-Jin;Kim, In-Goo;Kim, Kyun-Tae;Lee, Jong-In
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.435-440
    • /
    • 1996
  • Large Loss-of-Coolant Accidents analyzed in Final Safety Analysis Reports are usually covered by Reactor Inlet Header. Reactor Outlet Header and Primary Pump Suction breaks as representative cases. In this study we analyze the total (guillotine) break of an Emergency Core Cooling System (ECCS) pipe located at the ECCS injection point into the Primary Heat Transport System (PHTS). It was expected that thermal-hydraulic behaviors in the PHT and ECC systems are different from those of a Reactor Inlet Header break, having an equivalent break size. The main purpose of this study is to get insights on the differences occurred between the two cases and to assess these differences from the phenomenon behavior point of view. It was also investigated whether the ECCS line break analysis results could be covered by header break analysis results. The study reveals that as the intact loop has almost the same behavior in both analyzed cases. broken loop behavior is different mostly regarding sheath temperature in the critical core pass and pressure decrease in the broken Reactor Inlet Header. Differences are also met in the ECCS behavior and in event sequences timings.

  • PDF

Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-407C (혼합냉매 R-407C의 증발 열전달과 압력강하)

  • Roh, Geon-Sang;Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.542-549
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a horizontal copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300\;kg/m^2s$ and the saturation temperature of evaporator were $5^{\circ}C$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the increase of mass flux and vapor quality. The evaporation heat transfer coefficients of R-22 is about $5.68{\times}46.6%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is similar to that of R-407C. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of R-22 and R-407C. therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of R-22 and R-407C in a horizontal tube.