• 제목/요약/키워드: loop element

검색결과 276건 처리시간 0.024초

CPW-fed to CPS Dipole Antenna of Microstrip Tapered Balun with Triangular Loop Director

  • Lee, Hyeonjin
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1365-1368
    • /
    • 2014
  • A CPW-fed to CPS dipole antenna of triangular loop director by microstrip tapered balun is proposed for dual and wide band operations, in this paper. The proposed antenna is consisted of a CPW-fed to CPS transform, microstrip tapered balun element, CPS dipole driver and triangular loop director. A dual and wide bandwidth of the proposed dipole antenna is realized by introducing the triangular loop director and taper matching element. The operated frequency bandwidth is 1GHz (2.14~3.14 GHz) and 1.9 GHz (4.6~6.5 GHz) to return loss criterion of less than 10 dB. The measured return loss of the proposed antenna showed good results of the dual and wide band operating frequency and the radiation pattern. The proposed antenna is able to support WLAN wireless communications applications.

Finite Element Model Verification of Buckling Restrained Brace With Nonlinear Behavior (비선형 거동을 하는 비좌굴가새의 유한요소모델 검증)

  • Kim, Dae-Hong;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • 제21권2호
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, nonlinear finite element analysis was conducted based on the experimental results on buckling restrained brace. The reliability of the analytical model was verified by comparing the results of experimental studies with hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping. A valid finite element model has been secured and will be used as basic data for finite element analysis of buckling restrained braces in the future.

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

  • Oveisi, Atta;Sukhairi, T. Arriessa;Nestorovic, Tamara
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.643-658
    • /
    • 2018
  • In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product's costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.

The effects of different factors on obstacle strength of irradiation defects: An atomistic study

  • Pan-dong Lin;Jun-feng Nie;Yu-peng Lu;Gui-yong Xiao;Guo-chao Gu;Wen-dong Cui;Lei He
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2282-2291
    • /
    • 2024
  • In this work we study the effects of different factors of dislocation loop on its obstacle strength when interacting with an edge dislocation. At first, the interaction model for dislocation and dislocation loop is established and the full and partial absorption mechanism is obtained. Then, the effect of temperature, size and burgers vector of dislocation loop are investigated. The relation between the obstacle strength and irradiation dose has been established, which bridges the irradiation source and microscale properties. Except that, the obstacle strength of C, Cr, Ni, Mn, Mo and P decorated dislocation loop is studied. Results show that the obstacle strength for dislocation loop decorated by alloy element decreases in the sequence of Cr, Ni, Mn, C, P and Mo, which could be used to help parameterize and validate crystal plasticity finite element model and therein integrated constitutive laws to enable accounting for irradiation-induced chemical segregation effects.

Mode-decoupling controller for feedback model updating (궤환 모델 개선법을 위한 모드 분리 제어기)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF

First-Order Shear Deformable Subdivision Shell Element Consistent with Loop-Subdivision Surface (루프 서브디비전 곡면의 1차 전단 변형 쉘 요소)

  • 김형길;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.55-61
    • /
    • 2002
  • In the present study, a first order shear deformable Loop-subdivision triangular element which can handle transverse shear deformation of moderately thick shell and composite laminated or sandwich shells are developed. The developed element is more general than the previous one based on classical shell theory, since it includes the effect of transverse shell deformation and has standard five degrees of freedom per node. The quartic box spline function is employed as the interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.

  • PDF

A FEM study about the initial stress distribution on canine altered by the application point of preangulated TMA T-loop spring (Preangulated TMA T-loop spring의 적용 위치 변화에 따른 견치의 초기 응력 분포에 대한 유한 요소법적 연구)

  • Kim, Jung-Min;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • 제29권5호
    • /
    • pp.521-534
    • /
    • 1999
  • The purpose of this study was to find the difference of stress distribution on canine altered by the application point of preangulated T-loop spring. For this study, the finite element models of upper left canine, upper left second premolar and upper left first molar were made. Also, the finite element models of $0.017{\times}0.025$ inch preangulated, preactivated T-loop spring and $0.018{\times}0.025$ inch stainless steel wire were made. Three types of T-loop spring were made . the middle of activated T-loop is positioned in accordance with the middle position of distance of bracket position of both the canine and first molar, 2mm anterior, 2mm posterior. We compared the forces and the distribution of stress that were generated by the difference of position of T-loop spring. The results were as follows. 1. All of the 3 types of T-loop spring showed the similar retraction forces. 2. All showed the similar amount & pattern of stress distribution. 3. The centers of rotation of canine in 3 types of T-loop spring were same and were positioned between C and D plane. 4. The canine showed the intrusive force by 2mm anterior positioned T-loop spring, but the extrusive force by 2mm posterior positioned T-loop suing. Neverthless, because of the small amount of the forces, the effect of vertical force was not significant.

  • PDF

Prediction of optimal bending angles of a running loop to achieve bodily protraction of a molar using the finite element method

  • Ryu, Woon-Kuk;Park, Jae Hyun;Tai, Kiyoshi;Kojima, Yukio;Lee, Youngjoo;Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • 제48권1호
    • /
    • pp.3-10
    • /
    • 2018
  • Objective: The purpose of this study was to predict the optimal bending angles of a running loop for bodily protraction of the mandibular first molars and to clarify the mechanics of molar tipping and rotation. Methods: A three-dimensional finite element model was developed for predicting tooth movement, and a mechanical model based on the beam theory was constructed for clarifying force systems. Results: When a running loop without bends was used, the molar tipped mesially by $9.6^{\circ}$ and rotated counterclockwise by $5.4^{\circ}$. These angles were almost similar to those predicted by the beam theory. When the amount of tip-back and toe-in angles were $11.5^{\circ}$ and $9.9^{\circ}$, respectively, bodily movement of the molar was achieved. When the bend angles were increased to $14.2^{\circ}$ and $18.7^{\circ}$, the molar tipped distally by $4.9^{\circ}$ and rotated clockwise by $1.5^{\circ}$. Conclusions: Bodily movement of a mandibular first molar was achieved during protraction by controlling the tip-back and toe-in angles with the use of a running loop. The beam theory was effective for understanding the mechanics of molar tipping and rotation, as well as for predicting the optimal bending angles.

Structural Integrity Evaluation of Fuel Test Loop Submerged in Water Subjected to Postulated Pipe Rupture

  • Lee, Choon-Yeol;Kwon, Jae-Do;Lee, Yong-Son;Kim, Kil-Soo;Kim, Jun-Yeun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.215-225
    • /
    • 2000
  • The structural integrity of the fuel test loop (FTL) in a Korean experimental reactor is evaluated when the FTL, submerged in a water environment, is subjected to a postulated pipe rupture. The analyses are performed under static and dynamic conditions, imposing the thrust force history at each postulated pipe rupture section. Through analysis the following results are found: l) A double ended guillotine can not be expected based on the toughness of the material, 2) the structural integrity of the chimney surrounding the FTL would not impede the structural integrity by the pipe whip. All analyses are performed by finite element methods.

  • PDF

The Design of PI Controller Using Saturation Function (포화 함수를 이용한 PI 제어기 설계)

  • Oh, Seung-Rohk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제45권6호
    • /
    • pp.102-107
    • /
    • 2008
  • We propose an autotuning algorithm for PI controller with unknown plant. The proposed algorithm uses a saturation function and time delay element as a test signal. Since the integral element of PI controller reduces a phase margin in the closed loop system, the closed loop system could be resulted in unstable with PI controller. To avoid unstable in the closed loop system with PI controller, the proposed algorithm identifies one point information in the 3rd quadrant of Nyquist plot with a time delay element. The proposed method improves an accuracy of one point identified information with one saturation function. We demonstrate a performance of the proposed method via a simulation.