• Title/Summary/Keyword: lonomer content

Search Result 2, Processing Time 0.019 seconds

Physical Properties of Glass Fiber Reinforced Nylon 6,6 and lonomer Blends (Glass Fiber로 강화된 Nylon 6,6 / Ionomer 블렌드의 물리적 특성)

  • 박광석;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.536-539
    • /
    • 1999
  • Physical properties of glass fiber-reinforced nylon 6,6 and ionomer blends were investigated in variation of ionomer and glass fiber content. With the increase of ionomer content, tensile strength, impact strength and flexural strength decreased, whereas increasing glass fiber content, these properties were improves. Both permittivity and tan $\delta$ remain unchanged. Space charge distribution was investigated by PEA (Pulsed electroacoustic) method. Heterocharge was found in nylon 6,6 and 히ass fiber composites, whereas composites, whereas when ionomer is blended.

  • PDF

Effects of the Variables in the Fabrication of Anode on the Performance of DMFC (직접 메탄올 연료전지용 산화극 제조 변수가 성능에 미치는 영향)

  • Kim, Joon-Hee;Ha, Heung-Yong;Oh, In-Hwan;Hong, Seong-Ahn;Lee, Ho-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.18-22
    • /
    • 2003
  • Single cell performance has been investigated and characterized with variables in the fabrication of DMFC anode. The performance was checked as a function of ionomer content which affects ion conductivity in the catalyst layer, and catalyst slurry solvent which determines structure of agglomerates consisting of an ionomer and a catalyst. Anode with total ionomer to catalyst ratio of 0.6 showed the best performance and the lowest polarization resistance. Also, electrochemically effective surface area increased with ionomer content. As solubility of the ionomer decreases with decreasing solvent polarity, the size of agglomerates consisting of a catalyst and an ionomer became larger in the less polar solvent. The anode using DPK $(\varepsilon=12.60)$ as a solvent, which is less polar than generally-used water or alcohol species, showed the maximum performance and the lowest polarization resistance.