• Title/Summary/Keyword: longwave radiation

Search Result 52, Processing Time 0.025 seconds

Influence of Playground Land Covers on the Human Thermal Sensation (운동장 포장재료가 인간 열환경에 미치는 영향)

  • Hyun, Cheolji;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.3
    • /
    • pp.12-21
    • /
    • 2019
  • In order to investigate the effect of various pavement materials (artificial grass, natural grass, and clay sand) on the human thermal environment, the microclimate data in early autumn (air temperature, humidity, wind speed, and shortwave and longwave radiation) were measured and compared on each surface. The mean air temperature, humidity and wind speed of the pavement materials did not differ significantly and showed the greatest difference in the mean radiant temperature. Natural grass, which has the highest albedo, has the highest amount of shortwave radiation. The artificial turf had the highest surface temperature and the highest amount of longwave radiation. In the human thermal environment index PET, artificial grass > clay sand > natural grass. Natural grass had a maximum 2/3 level lower and a mean 1/2 level lower in PET as compared to artificial grass. The clay sand pavement had a maximum 2/3 level lower and a mean 1/3 level lower than the artificial grass. Natural grass had a maximum 1/3 level lower than the clay sand pavement. Their UTCIs showed smaller differences than the PETs. Therefore, it is necessary to carefully choose materials from the planning stage when designing outdoor spaces, including playgrounds.

Heat Fluxes in the Marine Atmospheric Surface Layer around the Korean Peninsula based on Satellite Data (위성자료를 이용한 한반도 주변 해상 대기표층의 열속)

  • HONG, Gi-Man;KWON, Byung-Hyuk;KIM, Young-Seup
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.2
    • /
    • pp.209-217
    • /
    • 2005
  • The energy balance of the surface layer of the water (the Yellow Sea, the East China Sea and the East Sea) was examined using satellite data. Variations of the net heat flux were similar to those of the latent heat flux which was more intensive than the sensible heat flux. The sensible heat flux was affected the difference between the sea surface temperature and the air temperature and was less important over the Yellow Sea. The maximum of the latent heat flux occurred in autumn when the air is drier and the wind is stronger. The shortwave radiation flux decreased with the latitude and depended on the cloudiness as the longwave radiation flux does. Annual variations of heat fluxes show that the latent heat flux was more intensive over the East China Sea than the East Sea and the Yellow Sea, while the spatial differences of the other heat fluxes were weak.

The Regional Dependency of Cloud-radiative Forcing on the Sea Surface Temperature in the Interannual and Seasonal Time Scales (경년과 계절 시간 규모하에서 해수면 온도에 대한 구름복사 강제력의 지역 의존도)

  • Lee, Woo-Seop;Kwak, Chong-Heum;So, Seon-Sup;Suh, Myoung-Seok;Kim, Maeng-Ki
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.558-567
    • /
    • 2003
  • The regional dependency of cloud-radiative forcing at the top of atmosphere is studied using ERBE (Earth Radiation Budget Experiment), ISCCP (International Satellite Cloud Climatology Project) and NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data for 60 months from January 1985 to December 1989 over tropical ocean. In the interannual time scale, the dependency of cloud-radiative forcing on the sea surface temperature over the equatorial eastern Pacific ocean is about 7.4Wm$^{-2}$K$^{-1}$ for longwave radiation and about -4.4Wm$^{-2}$K$^{-1}$ for shortwave radiation, respectively. This shows that the net cloud-radiative forcing due to the increase of sea surface temperature over the equatorial eastern Pacific ocean heats the atmosphere. But the dependency is reversed over tropical oceans with -3.4Wm$^{-2}$K$^{-1}$ for longwave and 1.9WmWm$^{-2}$K$^{-1}$ for shortwave radiation, indicating that the net cloud-radiative forcing cools the atmosphere over tropical oceans. In raw data including seasonal cycle, the dependency of cloud-radiative forcing over the equatorial eastern Pacific ocean is very similar to that in interannual time scale in both the magnitude and the sign. But the dependency of cloud-radiative forcing on the sea surface temperature over tropical oceans is about 0.2Wm$^{-2}$K$^{-1}$ for longwave and 2.7Wm$^{-2}$K$^{-1}$ for shortwave radiation, respectively. These results represent that the role of seasonal cycle on the cloud radiative forcing is gradually more important than role of interannual time scale as the ocean area is broadening from the tropical central Pacific to the tropical ocean.

Estimation of Aerosol Radiative Forcing by AGCM (대기 대순환 모형을 이용한 에어로졸의 복사 강제 추정)

  • Hong, Sung-Chul;Chung, Il-Ung;Kim, Hyung-Jin;Lee, Kyu-Tae;Lee, Jae-Bum
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.623-631
    • /
    • 2008
  • Many recent studies have concentrated upon the radiative effects of atmospheric aerosols. Though their scattering and absorption of radiation, aerosols can also induce some other important environment effects. In this study, new radiation code and aerosol data within Atmosphere General Circulation Model (AGCM) is used to assess the aerosol radiative forcing and to analyze relative climate effects. The new Kangnung National University AGCM Stratospheric-15 (KNU AGCM ST15) was integrated by using two sets of radiative effect of aerosols: CTRL as not a radiative effect of aerosols and AERO as a radiative effect of aerosols. Two cases show the difference of net shortwave radiation budget at top-of-atmosphere (TOA) is found to be about $-3.4Wm^{-2}$, at the surface (SFC) is about $-5.6Wm^{-2}$. Consequently the mean atmospheric absorption due to aerosol layer in global is about $2.2Wm^{-2}$. This result confirms the existence of a negative forcing due to the direct effect of aerosols at the surface and TOA in global annual mean. In addition, it is found that cooling over at the surface air temperature due to radiative effect of aerosols is about $0.17^{\circ}C$. It is estimated that radiative forcing of the net upward longwave radiation taken as the indirect effect of aerosol is much smaller than that of the direct effect as there is about $0.2Wm^{-2}$ of positive forcing both at TOA and at SFC. From this study, It made an accurate estimation of considering effect of aerosols that is negative effect. This may slow the rate of projected global warming during the $21^{st}$ century.

Changes in the Characteristics of Wintertime Climatology Simulation for METRI AGCM Using the Improved Radiation Parameterization (METRI AGCM의 복사 모수화 개선에 따른 겨울철 기후모의의 특징적 변화)

  • Lim, Han-Cheol;Byun, Young-Hwa;Park, Suhee;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.127-143
    • /
    • 2009
  • This study investigates characteristics of wintertime simulation conducted by METRI AGCM utilizing new radiation parameterization scheme. New radiation scheme is based on the method of Chou et al., and is utilized in the METRI AGCM recently. In order to analyze characteristics of seasonal simulation in boreal winter, hindcast dataset from 1979 to 2005 is produced in two experiments - control run (CTRL) and new model's run (RADI). Also, changes in performance skill and predictability due to implementation of new radiation scheme are examined. In the wintertime simulation, the RADI experiment tends to reduce warm bias in the upper troposphere probably due to intensification of longwave radiative cooling over the whole troposphere. The radiative cooling effect is related to weakening of longitudinal temperature gradient, leading to weaker tropospheric jet in the upper troposphere. In addition, changes in vertical thermodynamic structure have an influence on reduction of tropical precipitation. Moreover, the RADI case is less sensitive to variation of tropical sea surface temperature than the CTRL case, even though the RADI case simulates the mean climate pattern well. It implies that the RADI run does not have significant improvement in seasonal prediction point of view.

Airborne Remote Sensing of Evapotranspiration over Rice Paddy

  • Chen, Y.Y.;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.351-353
    • /
    • 2003
  • We present a retrieval scheme for the remote sensing of evapotranspiration (ET) over rice paddy. To perform the retrieval, high-resolution airborne imagery of multi-spectral visible and thermal infrared data, and ground-based meteorological measurements are utilized. Our ET retrieval scheme is based on the basic principal of surface energy budget, which is a result of balance in longwave and shortwave radiation, latent heat, sensible heat, and energy flux into the ground. To partition the latent and sensible heat fluxes of interest from the energy balance equation, three basic parameters are of most concern, including albedo, surface temperature, and normalized difference vegetation index (NDVI). The NDVI and albedo can be easily derived from the visible and near infrared spectral data, while the surface tem-perature can be determined through the analysis of the infrared data with the Stefan Boltzmann law. From the airborne imagery taken on 28 April 2003, we observe very good dry and wet pixels that can be easily corre-sponded to the radiation and evaporation controlled crite-ria, respectively, and, hence, for the further use in defin-ing the evaporative fraction needed to partition sensible and latent heat fluxes from the net energy flux. The de-rived ET is compared with the in situ measurements.

  • PDF

Ensemble Forecasting of Summer Seasonal Streamflow Using Hydroclimatic Information (수문기상정보를 이용한 여름 유량의 Ensemble 예측)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1455-1459
    • /
    • 2006
  • 우리나라 수자원 관리에서 여름 유량은 이수 및 치수 측면에서 매우 중요한 역할을 한다. 이러한 점에서 여름유량의 예측 가능성을 검토하는 것은 수자원 관리에 유연성을 주는 동시에 상대적으로 위험도를 저감시킬 수 있는 역할을 할 수 있다. 따라서 본 연구의 목적은 여름 계절 유량을 대상으로 기상인자와의 상관성 분석을 통해 유량 예측을 위한 수문기상정보(hydroclimatics)를 전 지구적으로 검토하고 최종적으로 불확실성을 고려할 수 있는 Ensemble예측을 실시하고자 한다. Ensemble예측은 설정 가능한 입력 자료를 통하여 다수의 출력자료를 얻는 방법론으로서 불확실성이 큰 기상 및 수문기상자료 분석에 주로 이용되고 있다. 본 연구에서는 해수면온도(sea surface temperature), 해수면기압(sea level pressure)과 방출장파복사에너지(outgoing longwave radiation)를 주요 기상인자로 고려하였으며 예측모형으로서는 Cross Ensemble(out of bagging)방법에 근거한 Support Vector Machine 모형을 이용하였다. 분석결과 주요 기상인자와 50%이상의 상관관계를 보이고 있으며 다소 합리적인 예측 결과를 제시하여 주고 있어 수자원관리를 위한 보조수단으로 이용이 가능할 것으로 사료된다.

  • PDF

Seasonal Rainfall Outlook of Nakdong River Basin Using Nonstationary Frequency Analysis Model and Climate Information (기상인자와 비정상성 빈도해석 모형을 이용한 낙동강유역의 계절강수량 전망)

  • Kwon, Hyun-Han;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.339-350
    • /
    • 2011
  • This study developed a climate informed Bayesian nonstationary frequency model which allows us to forecast seasonal summer rainfall at Nakdong River. We constructed a 37-year summer rainfall data set from 10 weather stations within Nakdong river basin, and two climate indices from sea surface temperature (SST) and outgoing longwave radiation (OLR) were derived through correlation analysis. The selected SST and OLR have been widely acknowledged as a climate driver for summer rainfall. The developed model was applied first to the 2010-year summer rainfall (888.1 mm) in order to assure ourself. We demonstrated model performance by comparing posterior distributions. It was confirmed that the proposed model is able to produce a reasonable forecast. The forecasted value is about 858.2 mm, and the difference between forecast and observation is about 30 mm. As the second case study, 2011-year summer rainfall forecast was made using an observed winter SSTs and an assumed 50% value of OLRs. The forecasted value is 967.7 mm and associated exceedance probability over average summer rainfall 680 mm is 92.9%. In addition, 50-year return period for summer rainfall was projected through the nonstationary frequency model. An exceedance probability over 1,400 mm corresponding to the 50-year return level is about 73.7%.

Analysis of Meteorological and Radiation Characteristics using WISE Observation Data (WISE 관측자료를 이용한 기상 및 복사 특성 분석)

  • Lee, Hankyung;Jee, Joon-Bum;Min, Jae-Sik;Kim, Sangil;Chae, Jung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • We analyzed the meteorological and radiation characteristics of Seoul metropolitan area using data from energy flux towers that were installed and operated by the Weather Information Service Engine (WISE). The meteorological and radiation variables included temperature, pressure, wind speed, wind direction, relative humidity, surface temperature, rainfall amount, upward and downward solar radiation, upward and downward longwave radiation, albedo and emissivity from 14 energy flux stations located in the Seoul metropolitan area from July 2016 to July 2017. According to the monthly data during the period, the albedo is low and emissivity is high at the Jungnang station in the urban and opposite at Bucheon station in the suburban area. For a station in natural state, the albedo was higher than urban stations because solar radiation reflects effectively. Relatively high temperatures were shown at stations located in urban area with low albedo and high emissivity, in general. However, temperature was high at Gajwa and Ttukseom stations, the albedo was relatively high due to the station environment surrounded by glass wall buildings and the Han river. In the station located in suburban area, both emissivity and temperature were low. Among these stations, Bucheon station had the highest emissivity values because the surface temperature was relatively lower than that of the suburban area. As a result, the albedo decreased and the emissivity increased at stations in urban areas. Additionally, Seoul metropolitan area had less than $100Wm^{-2}$ of net radiation, which implied that radiation energy could be absorbed in the atmosphere.

Estimation of Net Radiation in Three Different Plant Functional Types in Korea (한국의 세 개의 다른 식생기능형태에서의 순복사 추정)

  • Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.79-85
    • /
    • 2009
  • Net radiation ($R_N$) is a driving force of biological and physical processes between the surface and the atmosphere and its knowledge is critical to weather forecasting and water resource management. The measurement of $R_N$ is, however, scarce and it is typically estimated from an empirical relationship. This study presented two different methods of $R_N$ estimation over three major plant functional types (i.e., a deciduous forest, a coniferous forest, and a farmland) in Korea. One is a linear regression method between $R_N$ and solar radiation and the other is a radiation balance method. The two methods were examined using the data collected in 2008 at the three sites. Based on the linear regression method over a year, $R_N$ was 70% of the incoming shortwave radiation ($R_S{\downarrow}$) for a deciduous forest, 79% for a coniferous forest, and 64% for a farmland, indicating that the relationship was plant functional type-specific. For the radiation balance method, the inclusion of longwave radiation component slightly improved $R_N$ estimations. Overall, there was a good agreement between the observed and the estimated $R_N$ from both methods, indicating a reliable applicability of the two methods in estimating $R_N$.