• Title/Summary/Keyword: longitudinal zone

Search Result 187, Processing Time 0.021 seconds

A Study on Improvement of Crash Discrimination Performance for Offset and Angular Crash Events Using Electronic X-Y 2-Axis Accelerometer (전자식 X-Y 이축 가속도 센서를 이용한 오프셋 및 경사 충돌에 대한 충돌 판별 성능 개선에 관한 연구)

  • 박서욱;전만철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.128-136
    • /
    • 2003
  • In today's design trend of vehicle structure, crush zone is fiequently reinforced by adding a box-shaped sub-frame in order to avoid an excessive deformation against a high-speed offset barrier such as EU Directive 96/97 EC, IIHS offset test. That kind of vehicle structure design results in a relatively monotonic crash pulse for airbag ECU(Electronic Control Unit) located at non-crush zone. As for an angular crash event, the measured crash signal using a single-axis accelerometer in a longitudinal direction is usually weaker than that of frontal barrier crash. Therefore, it is not so easy task to achieve a satisfactory crash discrimination performance for offset and angular crash events. In this paper, we introduce a new crash discrimination algorithm using an electronic X-Y 2-axis accelerometer in order to improve crash discrimination performance especially for those crash events. The proposed method uses a crash signal in lateral direction(Y-axis) as well as in longitudinal direction(X-axis). A crash severity measure obtained from Y-axis acceleration is used to improve the discrimination between fire and no-fire events. The result obtained by the proposed measure is logically ORed with an existing algorithm block using X-axis crash signal. Simulation and pulse injection test have been conducted to verify the performance of proposed algorithm by using real crash data of a 2,000cc passenger vehicle.

Behavior of the Ground in Obliquely Crossed area Due to Tunnel Excavation Under the Existing Tunnel (기존터널에 근접하여 경사로 교차되는 하부터널굴착에 따른 교차부지반의 거동)

  • Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2005
  • The behaviors of the ground in crossed zone and the existing upper tunnel in shallow cover due to the excavation of new lower tunnel crossed to that was studied. Model test was performed in the large scale test pit, the size was '$4.0m(width){\times}3.8m(height){\times}4.1m(length)$'. Test ground was constructed uniformly by sand in middle density and test with the crossed angle of $56^{\circ}$ (obliquely) were performed. The numerical analysis was performed on equal condition with model test. Results of the study by model test and numerical analysis show that earth pressure and settlement of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. Model test shows that upper tunnel blocks stress flow due to the longitudinal arching effect by excavation of lower tunnel.

  • PDF

Characteristic and Measurement Technology of Inner Welding Residual Stresses in Thick Steel Structures (극후물재 용접부 내부잔류응력 측정기술 및 특성)

  • Park, Jeong-ung;An, Gyu-baek;Woo, Wanchuck
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.16-21
    • /
    • 2016
  • Recent keywords of the heavy industries are large-scale structure and productivity. Especially, the sizes of the commercial vessels and the offshore structures have been gradually increased to deliver goods and explore or produce oil and natural gas in the Arctic. High heat input welding processes such as electro gas welding (EGW) have been widely used for welding thick steel plates with flux-cored arc welding (FCAW), especially in the shipbuilding industries. Because high heat input welding may cause the detrimental effects on the fracture toughness of the welded joint and the heat affected zone, it is essential to obtain the sufficient toughness of welded joint. There are well known that the fracture toughness like CTOD, CVN, and KIC were very important factors in order to secure the safety of the structures. Furthermore, the welding residual stress should be considered to estimate the unstable fracture in both EGW and FCAW. However, there are no references on the welding residual stress distribution of EGW and FCAW with thick steel plates. Therefore the welding residual stresses were very important elements to evaluate the safety of the welded structure. Based on the measurement results, the characteristics of residual stress distribution through thickness were compared between one-pass electron gas welding and multi-pass flux-cored arc welding. The longitudinal residual stress in the multi-pass flux-cored arc welding is tensile through all thicknesses in the welding fusion zone. Meanwhile, longitudinal residual stress of EGW is tensile on both surfaces and compressive at the inside of the plate. The magnitude of residual stresses by electron gas welding is lower than that by flux-cored arc welding.

A Study on the Longitudinal Bone Growth of Growth-stimulating Material with Eleutherococcus senticosus (가시오가피가 함유된 성장촉진용 조성물의 골성장효과 연구)

  • Yang, Dong-Sik;Cha, Min-Ho;Kang, Bong-Joo;Oh, Se-Wook;Kim, Young-Eon;Yoon, Yoo-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.702-707
    • /
    • 2003
  • This study was conducted to evaluate the effect of a growth-stimulating material (GSM) containing Eleutherococcus senticosuson on the longitudinal bone growth. The effects of GSM on proliferation zone and IGF-1 mRNA expression in rat growth plate, IGF-1 mRNA expression in MG-63 osteoblast and Hep-G2 hepatocyte, and bone growth of mouse tibia were studied. GSM significantly increased the proliferation zone in growth plate of proximal tibia (P<0.001) and the IGF-1 mRNA expression in growth plate was also increased (P<0.01). Treatment of GSM to MG-63 osteoblast and Hep-G2 hepatocyte also increased IGF-1 mRNA expression more than twice. In addition, bone mineral density of mouse tibia was significantly increased by GSM (P<0.05). Therefore, it was shown that GSM has an activity of bone growth promotion by increasing the expression of IGF-1, a major bone growth factor.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • You, Young-Min;Kang, Won-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.

A fundamental study of J-integral using the method of caustics for polycarbonate (Caustics 방법에 의한 Polycarbonate의 J-적분값 결정에 관한 기초적 연구)

  • 이억섭;박기용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 1990
  • This study investigated a method for the determination of the J-integral for a tough glassy polymer such as polycarbonate plates by using the method of caustics. Comparing the values of J-integral determined by a numerical analysis and by the method of caustics, the method of caustics was found to be an effective experimental technique for the determination of the J-integral. The ratio between two J-integrals determined by the method of caustics and by finite element method converged into 1 within the limit of low load. However, it was noticed that the greater the plastic zone at the crack tip was, the lower the J-integral obtained by the reflect method of caustics. This difference may be deduced from the damage at the crack tip such as craze appeared in the polycarbonate plate. It was confirmed that the ratio of longitudinal diameter( $D_{l}$ ) to transverse diameter ( $D_{t}$) of caustics generally converged into 1 at the low load. The transition of the state of stress at the vicinity of a crack tip from plane strain to plane stress was deduced by noticing that the longitudinal diameter( $D_{l}$ ) grew faster than the transverse diameter( $D_{t}$) of caustics within the higher load range.

  • PDF

Ductility of Circular Hollow Columns with Internal Steel Tube (강관 코아 합성 중공 기둥의 연성 거동 연구)

  • 강영종;한승룡;박남회
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

On the Deformation Control of Ship's Thin Plate Block by Applying the Tensioning Method (장력법을 적용한 선체 박판블록의 변형감소 방안에 관한 실험연구)

  • Lee Joo-Sung;Kim Cheul-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.103-108
    • /
    • 2006
  • It has been well appreciated that reducing weld-induced deformation as law as possible is important during fabrication for a more efficient production of blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the weld-induced deformation. In order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present experimental study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.

Investigation of bond-slip modeling methods used in FE analysis of RC members

  • Demir, Serhat;Husem, Metin
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.275-291
    • /
    • 2015
  • Adherence between reinforcement and the surrounding concrete is usually ignored in finite element analysis (FEA) of reinforced concrete (RC) members. However, load transition between the reinforcement and surrounding concrete effects RC members' behavior a great deal. In this study, the effects of bond-slip on the FEA of RC members are examined. In the analyses, three types of bond-slip modeling methods (perfect bond, contact elements and spring elements) and three types of reinforcement modeling methods (smeared, one dimensional line and three dimensional solid elements) were used. Bond-slip behavior between the reinforcement and surrounding concrete was simulated with cohesive zone materials (CZM) for the first time. The bond-slip relationship was identified experimentally using a beam bending test as suggested by RILEM. The results obtained from FEA were compared with the results of four RC beams that were tested experimentally. Results showed that, in FE analyses, because of the perfect bond occurrence between the reinforcement and surrounding concrete, unrealistic strains occurred in the longitudinal reinforcement. This situation greatly affected the load deflection relationship because the longitudinal reinforcements dominated the failure mode. In addition to the spring elements, the combination of a bonded contact option with CZM also gave closer results to the experimental models. However, modeling of the bond-slip relationship with a contact element was quite difficult and time consuming. Therefore bond-slip modeling is more suitable with spring elements.

Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams

  • Panda, K.C.;Bhattacharyya, S.K.;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.75-98
    • /
    • 2013
  • This study focuses on shear strengthening performance of simply supported reinforced concrete (RC) T-beams bonded by glass fibre reinforced polymer (GFRP) strips in different configuration, orientations and transverse steel reinforcement in different spacing. Eighteen RC T-beams of 2.5 m span are tested. Nine beams are used as control beam. The stirrups are provided in three different spacing such as without stirrups and with stirrups at a spacing of 200 mm and 300 mm. Another nine beams are used as strengthened beams. GFRP strips are bonded in shear zone in U-shape and side shape with two types of orientation of the strip at $45^{\circ}$ and $90^{\circ}$ to the longitudinal axis of the beam for each type of stirrup spacing. The experimental result indicates that the beam strengthened with GFRP strips at $45^{\circ}$ orientation to the longitudinal axis of the beam are much more effective than $90^{\circ}$ orientation. Also as transverse steel increases, the effectiveness of the GFRP strips decreases.