• Title/Summary/Keyword: longitudinal zone

Search Result 185, Processing Time 0.022 seconds

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

An Experimental Study on the Relocating Plastic Hinging Zones of Reinforced Concrete Beams Subjected to Cyclic Loads (반복하중을 받는 철근콘크리트 보의 소성힌지 이동에 관한 실험적 연구)

  • 김윤일;최창식;천영수;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.77-82
    • /
    • 1989
  • In this paper an experimental approach of the relocation plastic hinging zones of nine reinforced concrete exterior beam-column subassemblages under cyclic loads was tried. The main parameters of the testing program were location of the plastic hinge, difference of the special reinforcement, inclined or intermediate layers of longitudinal reinforcement, applied maximum shear stress. The conclusions presented herein are based on the limited texts conducted. Inclined or intermediate layers of longitudinal reinforcement and extra top and bottom steel in the beam over a specific legnth can be used to move the beam plastic hinging zone away from the column face. But, for the use of intermediate layers of longitudinal reinforcement, sheat reinforcement detail need further investigation.

  • PDF

Symmetry of GaAsN Conduction-band Minimum: Resonant Raman Scattering Study (GaAsN 전도띠 바닥의 대칭성: 공명라만산란연구)

  • Seong M.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.162-167
    • /
    • 2006
  • The symmetry of the conduction-band minimum of $GaAs_{1-x}N_{x}$ is probed by performing resonant Raman scattering (RRS) on thin layers of $GaAs_{1-x}N_{x}(x{\leq}0.7)$ epitaxially grown on Ge substrates. Strong resonance enhancement of the LO(longitudinal optical)-phonon Raman intensity is observed with excitation energies near the $E_0$ as well as $E_+$ transitions, However, in contrast to the distinct LO-phonon line-width resonance enhancement and activation of various X and L zone-boundary phonons brought about slightly below and near the $E_+$ transition, respectively, we have not observed any resonant LO-phonon line-width broadening or activation of sharp zone-boundary phonons near the $E_0$ transition. The observed RRS results reveal that the conduction-band minimum of GaAsN predominantly consists of the delocalized GaAs bulk-like states of ${\Gamma}$ symmetry.

A Study of Hydrodynamic Dispersions in the Unsaturated and the Saturated Zone of a Multi-soil Layer Deposit Using a Continuous Injection Tracer Test (복합토양층의 불포화대와 포화대에서 연속주입 추적자시험을 이용한 수리분산특성 연구)

  • Chung, Sang-Yong;Kang, Dong-Hwan;Lee, Min-Hee;Son, Joo-Hyong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.48-56
    • /
    • 2006
  • Using a continuous injection tracer test at a multi-soil layer deposit, the difference of hydrodynamic dispersions in unsaturated and saturated zones were analyzed through breakthrough curves of Rhodamine WT, linear regression of concentration versus time, concentration variation rates versus time, and concentration ratio according to the distance from injection well. As a result of continuous injection tracer test, the difference of the maximum concentrations of Rhodamine WT in unsaturated and saturated zones were 13-15 times after 160 hours, and the increased rate of concentration versus time in unsaturated zone was about 10 times higher than in saturated zone. The fluctuation of Rhodamine WT breakthrough curve and concentration variation rate with time in saturated zone were larger than in unsaturated zone. Rhodamine WT concentration ratio with the distance from the injection well in saturation zone was linearly decreased faster than in unsaturated zone, and the elapsed time necessary for the concentration ratio less than 2 was longer in saturation zone. The differences resulted from the lower concentration and slower hydrodynamic dispersion of Rhodamine WT at the saturation zone of the multi-soil layer deposit, in which groundwater flow significantly flow and aquifer materials have high hydraulic heterogeneity. Effective porosity, longitudinal and transverse dispersivities were estimated $10.19{\sim}10.50%,\;0.80{\sim}1.98m$ and $0.02{\sim}0.04m$, respectively. The field longitudinal dispersivity is over 12 times larger than the laboratory longitudinal dispersivity by the scale-dependent effect.

Direction of Tissue Contraction after Microwave Ablation: A Comparative Experimental Study in Ex Vivo Bovine Liver

  • Junhyok Lee;Hyunchul Rhim;Min Woo Lee;Tae Wook Kang;Kyoung Doo Song;Jeong Kyong Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.42-51
    • /
    • 2022
  • Objective: This study aimed to investigate the direction of tissue contraction after microwave ablation in ex vivo bovine liver models. Materials and Methods: Ablation procedures were conducted in a total of 90 sites in ex vivo bovine liver models, including the surface (n = 60) and parenchyma (n = 30), to examine the direction of contraction of the tissue in the peripheral and central regions from the microwave antenna. Three commercially available 2.45-GHz microwave systems (Emprint, Neuwave, and Surblate) were used. For surface ablation, the lengths of two overlapped square markers were measured after 2.5- and 5-minutes ablations (n = 10 ablations for each system for each ablation time). For parenchyma ablation, seven predetermined distances between the markers were measured on the cutting plane after 5- and 10-minutes ablations (n = 5 ablations for each system for each ablation time). The contraction in the radial and longitudinal directions and the sphericity index (SI) of the ablation zones were compared between the three systems using analysis of variance. Results: In the surface ablation experiment, the mean longitudinal contraction ratio and SI from a 5-minutes ablation using the Emprint, Neuwave, and Surblate systems were 28.92% and 1.04, 20.10% and 0.53, and 24.90% and 0.45, respectively (p < 0.001). A positive correlation between longitudinal contraction and SI was noted, and a similar radial contraction was observed. In the parenchyma ablation experiment, the mean longitudinal contraction ratio and SI from a 10-minutes ablation using the three pieces of equipment were 38.60% and 1.06, 32.45% and 0.61, and 28.50% and 0.50, respectively (p < 0.001). There was a significant difference in the longitudinal contraction properties, whereas there was no significant difference in the radial contraction properties. Conclusion: The degree of longitudinal contraction showed significant differences depending on the microwave ablation equipment, which may affect the SI of the ablation zone.

Dissipation and Control of Flow Instability in a Rectangular Swirl Combustor using Cooling Flow Injection (사각 스월 연소기에서 냉각 유동을 이용한 연소기 내 유동 불안정 감쇠 및 조종)

  • Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.236-241
    • /
    • 2009
  • To identify turbulent flow characteristics of non-reacting case resulted from cooling flow injection in a rectangular swirl combustor, 3D Large Eddy Simulation(LES) was implemented and Proper Orthogonal Decomposition(POD) analysis was used for post-processing. The combustor of concern is the LM6000, lean premixed dry low-NOx annular combustor, developed by GEAE. It was observed that increase in speed of shear layer resulted from the inflow of cooling flow caused intensified vorticity magnitude in central toroidal recirculation zone. In the case of vorticity magnitude in corner recirculation zone, however, was weakened. In addition, pressure fluctuation in combustor was damped down and longitudinal acoustic mode was significantly dissipated

  • PDF

A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model (존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구)

  • Kim, Hyun-Jeong;Roh, Jae-Seong;Kim, Dong-Hyeon;Jang, Yong-Jun;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF

Behavior of the ground in rectangularly crossed area due to tunnel excavation under the existing tunnel (I) (기존터널에 근접한 직각교차 하부터널의 굴착에 따른 교차부지반의 거동 (I))

  • Kim, Dong-Gab;Kim, Seung-Hyun;Hong, Suk-Bong;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.3-12
    • /
    • 2005
  • The behaviors of the ground in crossed zone and the existing upper tunnel in shallow cover due to the excavation of new lower tunnel Rectangularly crossed to that was studied. Model tests were performed in the large scale test pit, the size was '$4.0m(width){\times}3.8m(height){\times}4.1m(length)$'. Test ground was constructed uniformly by sand in middle density. Results of the model tests show that earth pressure and settlement of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. Upper tunnel blocks stress flow due to the longitudinal arching effect by excavation of lower tunnel.

  • PDF

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Reinforced Concrete Wall under In-Plane Flexure at Ultimate State (철근콘크리트 벽체의 극한상태 면내 휨에 대한 고려)

  • 김장훈;김지현;박홍근;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.891-896
    • /
    • 2001
  • The determination of compressive zone at the critical section of concrete walls under in-plane flexure is important in both assessing the ductility and designing the seismic retrofit. Recognizing this, the once-predominated code approach to determine the compressive zone was advanced by considering concrete rectangular stress block parameters varying with the extreme fiber strain in compression. It is shown that the major factors influencing the magnitude of compressive zone are axial load ratio, concrete strength, longitudinal steel ratio, yield strength and the level of strain at extreme compression fiber of wall sections. The present paper closes with the discussion for the research agenda requiring further study to investigate the behavior of reinforced concrete walls.

  • PDF