• Title/Summary/Keyword: longitudinal wave speed

Search Result 36, Processing Time 0.023 seconds

Improving Wave Propagation Performance of an Ultrasonic Waveguide for Heat Isolation (열 차단용 초음파 도파관의 전파성능 향상 연구)

  • 최인석;전한용;김인수;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • This paper is concerned with protecting piezoelectric transducers used in an ultrasonic flowmeter from the high temperature of hot fluid in a pipe by using a waveguide and with improving the propagation of ultrasonic longitudinal vibration in the waveguide. Waveguide material has been chosen for efficient insulation of heat transferred in the waveguide, and the minimum length of the waveguide for protecting piezoelectric transducer has been estimated. Forced response of the longitudinal vibration in a uniform circular rod has been obtained and the length of the waveguide has been selected for maximum amplitude. Longitudinal vibration response of a conically-tapered rod excited at a natural frequency has been obtained to confirm that wave motion is amplified as the cross-sectional size of the waveguide decreases along the axial direction. The fact that dispersion of a pulse wave in a waveguide is reduced as the cross-sectional radius is decreased has been examined theoretically and confirmed experimentally by using a single-rod waveguide. A bundle-type waveguide has proven to be a practical one through the evaluation of the wave propagation performance.

Experimental Identification of the Longitudinal Wave Propagation Speed in Fluid-filled Elastic Hose (유체 충진 탄성호스 내의 길이 방향 파동 전파속도에 관한 실험적 규명)

  • Kwon, O-Cho;Joh, Chee-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.804-810
    • /
    • 2000
  • In this paper, an experimental identification method is presented to identify the bulge wave and extensional wave propagation speeds in the fluid-filled elastic hose. An fluid-filled hose is hanged vertically for straight position. The exciting device of piston type is developed to generate the bulge wave and extensional wave in the elastic hose. Hydrophones are arranged in the fluid-filled hose linearly to measure the wave pressure. The wave speeds are estimated using the wavenumber-frequency spectrum analysis technique.

  • PDF

Viscoelastic Property Evaluation of Asphalt Cement by Ultrasonic Measurement (초음파 측정법에 의한 아스팔트 세멘트의 점탄성 특성 평가)

  • Lee, Jai-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.402-411
    • /
    • 2000
  • This study investigates the method to measure the viscoelastic properties of asphalt cement, one of the viscoelastic materials, using the ultrasound. The wave speed and attenuation were measured from $-20^{\circ}C$ to $60^{\circ}C$ at the frequency of 2.25MHz. Then, the storage and loss longitudinal moduli, loss tangent storage and loss longitudinal compliances were found depending on the temperatures based on the linear viscoelastic theory. Stress relaxation, creep, and viscosity were predicted using Maxwell and Voigt-Kelvin viscoelastic models. The validity of superposition principle and shift factor were verified by comparing the present results to the data reported in the literatures.

  • PDF

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Transient Dynamic Stress Analysis of Transversely Isotropic Cylinders Subject to Longitudinal Impact (충격압축하중을 받는 횡등방성 중실축의 과도 동적해석)

  • Oh, Guen;Sim, Woo-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.521-532
    • /
    • 2007
  • Elastic wave propagations in the semi-infinite transversely isotropic cylinder under various kinds of longitudinal impact loads are analyzed using the axisymmetric finite element method and Houbolt time-integration scheme. For which the finite element program is newly constructed and verified through the comparison of present numerical results with those by other researchers. E-type glass-epoxy composite cylinders with different fiber volume fractions are adopted and studied in detail with dynamic responses of the isotropic cylinder. Three dimensional wave motions are given in graphic form to show the realistic view of the wave propagation. Nondimensionalized dynamic characteristic variables which relate the size of finite element mesh, the time step, and the wave speed are presented for obtaining accurate and stable numerical results.

The Finite Depth Effect on the Ship Motion in Longitudinal Regular Head Waves (종규칙파중(縱規則波中)에서 수심(水深)이 선체운동(船體運動)에 미치는 영향(影響))

  • J.H.,Hwang;S.J.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1975
  • Recently, as the dimensions of energy carriers increase, especially in draft, a reliable prediction of the ship motions at finite depths of water becomes necessary. The purpose of this paper is to probe the effect of finite water depth on the hydrodynamic forces and ship motions, particularly heave and pitch, in longitudinal regular head waves, by comparing the experimental value of Freakes and Keay with the author's theoretical value obtained by applying the modified strip theory to the Mariner class ship. It is confirmed that generally the hydrodynamic coefficients in the equations of motion increase with decreasing water depth, and the wave exciting forces and moments decrease with decreasing water depth. Amplitudes of heave and pitch in longitudinal regular head waves decrease as the water depth in the range where the length of the incident wave is comparatively long. The effects of Froude Number on the hydrodynamic coefficients increase with decreasing water depth and is more noticeable in the case of heave than pitch. In heave, generally the discrepancy between the experimental value and the theoretical value is relatively small in the case of $F_n=O$, but it is very large in the case of $F_n=0.2$. It is considered that the trend stems from the ignorance of the three dimensional effect and the other effects due to shallowness of water on the hydrodynamic coefficients in the theoretical calculation. An extension of methods for calculating the two dimensional hydrodynamic forces to included the effect of forward speed should be recommended. It is required that more experimental works in finite water depths will be carried out for correlation studies between the theoretical calculation, according tp modified strip theory, and model experiments.

  • PDF

Development of an Elastic Wave Sensor Including Rotary-encoding Capability (회전속도 측정 기능을 포함한 비접촉 탄성파 센서의 개발)

  • Lee, Ho-Cheol;Kim, Myong-Ho;Park, Jung-Yang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.143-146
    • /
    • 2006
  • In this paper, a hybrid sensor is proposed that has two capabilities: The first is to sense longitudinal of flexural elastic waves selectively which are transmitted along the targe shaft, the second to measure the rotating speed of the shaft. All measurement are made in a noncontact manner since this sensor uses magnetostriction as its measuring principles. Furthermore, the switching between these two sensing capabilities are accomplished by a very simple mechanical operation. To verify the capabilities of the Proposed sensor, an Prototype sensor are fabricated and the experiments are made. The result shows this sensor can embody two sensing capabilities in one sensor configuration.

  • PDF

The overall motion sickness incidence applied to catamarans

  • Piscopo, Vincenzo;Scamardella, Antonio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.655-669
    • /
    • 2015
  • The Overall Motion Sickness Incidence is applied to the hull form optimization of a wave piercing high-speed catamaran vessel. Parametric hull modelling is applied to generate two families of derived hull forms, the former varying the prismatic coefficient and the position of longitudinal centre of buoyancy, the latter instead the demi-hull separation. Several heading angles are analysed in a seaway, considering all combinations of significant wave height and zero-crossing period under two operating scenarios. The optimum hull is generated and vertical accelerations at some critical points on main deck are compared with the parent ones. Finally a comparative analysis with the results obtained for a similarly sized monohull passenger ship is carried out, in order to quantify, by the OMSI, the relative goodness in terms of wellness onboard of monohulls and catamarans, as a function of sea states and operating scenarios.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

Numerical Analysis of the Initiation and Development of Corrugation on a Gravel Road (수치해석적 기법을 활용한 골재 도로의 콜루게이션 발생 및 진전 분석)

  • Yun, Taeyoung;Chung, Taeil;Shin, Hyu-Soung
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • PURPOSES : In this research, the initiation and development of corrugation on a gravel road with certain wheel and boundary conditions were evaluated using a coupled discrete-element method (DEM) with multibody dynamics (MBD). METHODS : In this study, 665,534 particles with a 4-mm diameter were generated and compacted to build a circular roadbed track, with a depth and width of 42 mm and 50 mm, respectively. A single wheel with a 100-mm diameter, 40-mm width, and 0.157-kg mass was considered for the track. The single wheel was set to run slowly on the track with a speed of 2.5 rad/s so that the corrugation was gradually initiated and developed without losing contact between the wheel and the roadbed. Then, the shape of the track surface was monitored, and the movement of the particles in the roadbed was tracked at certain wheel-pass numbers to evaluate the overall corrugation initiation and development mechanism. RESULTS : Two types of corrugation, long wave-length and short wave-length, were observed in the circular track. It seems that the long wave-length corrugation was developed by the longitudinal movement of surface particles in the entire track, while the short wave-length corrugation was developed by shear deformation in a local section. Properties such as particle coefficients, track bulk density, and wheel mass, have significant effects on the initiation and development of long-wave corrugation. CONCLUSIONS : It was concluded that the coupled numerical method applied in this research could be effectively used to simulate the corrugation of a gravel road and to understand the mechanism that initiates and develops corrugation. To derive a comprehensive conclusion for the corrugation development under various conditions, the driver's acceleration and deceleration with various particle gradations and wheel-configuration models should be considered in the simulation.