• Title/Summary/Keyword: longitudinal shear

Search Result 528, Processing Time 0.03 seconds

Resolution Enhancement of Scanning Tomographic Acoustic Microscope System

  • Ko, Daesik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.70-76
    • /
    • 1996
  • We proposed to use shear waves instead of longitudinal waves in a STAM (scanning tomographic acoustic microscope system) in which the specimens are solid. For any specimen with a shear modulus, mode conversion will take place at the water-solid interface. Some of the energy of the insonifying longitudinal waves in the water will convert to shear wave energy within the specimen. The shear wave energy is detectable and can be used for tomographic reconstruction. The resolution limitation of STAM depends on the available angular view and the acoustic wavelength. While wave transmission in most solid specimens is limited to about 20°for longitudinal waves, we show that it is about twice that high for shear waves. Since the wavelength of the shear wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution. In order to compare the operation of a shear-wave STAM with that of the conventional longitudinal-wave STAM we have simulated tomographic reconstruction for each. Our simulation results with aluminum specimen and back-and-forth propagation algorithm showed resolution of a shear-wave STAM is better than that of a longitudinal-wave STAM.

  • PDF

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 2-Phase Composites (연속섬유가 보강된 2상 복합재료의 종방향 전단계수 해석)

  • Lee, Dong-Ju;Jeong, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2770-2781
    • /
    • 1996
  • Longitudinal shear modulus of continuous fiber reinforced 2-phase composites is predicted by theoretical and numerical analysis methods. In this paper, circular, hexagonal and rectangular shapes of reinforced fiber are considered using unit cell concept. And fiber array is regular rectangular and hexagonal fiber arrangement. Longitudinal shear modulus is a function of fiber distribution pattern and fiber volume change. It is found that the rectangular array has a higher longitudinal shear modulus than the hexagonal one. Also, the rectangular fiber shape in lower fiber volume fraction and the circular fiber shape in higher fiber volume fraction show the higher longitudinal shear modulus. And it has been found that the theoretical and numerical predictions of the longitudinal shear modulus give a good agreement with the experimental data at lower fiber volume fraction. Both the distance and stress transfer between the fibers are discussed as the major determing factors.

SEISMIC RESPONSE CHARACTERISTICS OF THE MULTI-SPAN CONTINUOUS GBRIDGE WITH SHEAR KEYS (전단키와 있는 다경간 연속교의 지진응답특성)

  • 이지훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.120-127
    • /
    • 1998
  • This paper deals with the dynamic responses of the multi-span continuous bridge with longitudinal shear keys. It is motivated by a need to understand the effects of longitudinal shear keys which may be used for the reduction of the longitudinal seismic force in continuous bridges. The results show that (1) The force reduction of fixed pier is proportional to the ratio of gap size and elastic maximum displacement of the bridges without shear keys ; (2) The thermal movement has little effect on the response of the continuous bridges with shear keys. Also the simplified equation is proposed to calculate the maximum response of the continuous bridges with longitudinal shear keys. The equation requires only the elastic analysis results of the bridge and the gap size between superstructure and shear keys.

  • PDF

Experimental investigations on composite slabs to evaluate longitudinal shear strength

  • Saravanan, M.;Marimuthu, V.;Prabha, P.;Arul Jayachandran, S.;Datta, D.
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.489-500
    • /
    • 2012
  • Cold-formed steel profile sheets acting as decks have been popularly used in composite slab systems in steel structural works, since it acts as a working platform as well as formwork for concreting during construction stage and also as tension reinforcement for the concrete slab during service. In developing countries like India, this system of flooring is being increasingly used due to the innate advantage of these systems. Three modes of failure have been identified in composite slab such as flexural, vertical shear and longitudinal shear failure. Longitudinal shear failure is the one which is difficult to predict theoretically and therefore experimental methods suggested by Eurocode 4 (EC 4) of four point bending test is in practice throughout world. This paper presents such an experimental investigation on embossed profile sheet acting as a composite deck where in the longitudinal shear bond characteristics values are evaluated. Two stages, brittle and ductile phases were observed during the tests. The cyclic load appears to less effect on the ultimate shear strength of the composite slab.

Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams (전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향)

  • Lee Jung-Yoon;Kim Wook-Yeon;Kim Sang-Woo;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.795-803
    • /
    • 2004
  • To prevent the shear failure that occurs abruptly with no sufficient warning, the minimum amount of shear reinforcement should be provided to reinforced concrete(RC) beams. The minimum amount of shear reinforcement of RC beams is influenced by not only compressive strength of concrete but also shear span-to-depth ratio and ratio of tensile longitudinal reinforcement. In this paper, 14 RC beams were tested in order to observe the influences of shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, and compressive strength of concrete. The test results indicated that the rate of shear strength to the diagonal cracking strength of RC beams with the same amount of shear reinforcement increased as the ratio of tensile longitudinal reinforcement increased, while it decreased as the shear span-to-depth ratio increased. The observed test results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation.

Effective Longitudinal Shear Modulus of Polymeric Composite Using Iosipescu Shear Test (Iosipescu Shear Test를 이용한 고분자 복합재료의 종방향 전단계수 연구)

  • Jeong, Tae-Heon;Kwon, Yong-Su;Lee, You-Tae;Lee, Dong-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Effective shear modulus of continuous fiber reinforced polymeric composites is measured using a modified Iosipescu Shear Test(IST) and compared with data obtained by finite element analyses that a concept of unit cell is. It is found that the numerical results of the longitudinal shear modulus give a good agreement with experimental data at lower fiber volume fraction. In this paper, both the distance and stress transfer between the fibers are discussed as the major factors.

  • PDF

Characteristics of the shear behavior of RC rectangular sectional columns and initial shear strength considering the ratio of longitudinal bars (RC 사각단면 기둥의 전단거동특성과 축방향철근비를 고려한 초기전단강도)

  • Lee, Jong-Seok;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.27-36
    • /
    • 2010
  • It is well known that the shear strength of an RC column subjected to a lateral force decreases with the increase of the displacement ductility of column. This decreasing rate of shear strength is quite dependent on the initial shear strength. Therefore, the evaluation of the initial shear strength is important to predict the shear strength with reasonable accuracy. The shear behavior is complex because many parameters, such as the sectional shape, aspect ratio, axial force, longitudinal bars and ductility, are mutually interactive. In this study, the initial shear strength has been investigated by experiments varying parameters such as the aspect ratios, void ratios, ratio of longitudinal bars and sectional types. A new empirical equation for the initial shear strength, considering the ratio of the longitudinal bars, has been proposed and its validity has been assessed.

Activation of a Ca2+ wave by Shear Stress in Atrial Myocytes: Role of Phospholipase C-inositol 1,4,5-Trisphosphate Receptor Signaling (전단 자극에 의한 심방 근세포 칼슘 웨이브의 발생: Phospholipase C-이노시톨 1,4,5-삼인산 수용체 신호전달의 역할)

  • Kim, Joon-Chul;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.59 no.4
    • /
    • pp.158-163
    • /
    • 2015
  • Cardiac myocytes are subjected to fluid shear stress during each contraction and relaxation. Under pathological conditions, such as valve disease, heart failure or hypertension, shear stress in cardiac chamber increases due to high blood volume and pressure. The shear stress induces proarrhythmic longitudinal global $Ca^{2+}$ waves in atrial myocytes. In the present study, we further explored underlying cellular mechanism for the shear stress-induced longitudinal global $Ca^{2+}$ wave in isolated rat atrial myocytes. A shear stress of ${\sim}16dyn/cm^2$ was applied onto entire single myocyte using pressurized fluid puffing. Confocal $Ca^{2+}$ imaging was performed to measure local and global $Ca^{2+}$ signals. Shear stress elicited longitudinally propagating global $Ca^{2+}$ wave (${\sim}80{\mu}m/s$). The occurrence of shear stress-induced atrial $Ca^{2+}$ wave was eliminated by the inhibition of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors ($IP_3Rs$). In addition, pretreatment of phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the generation of longitudinal $Ca^{2+}$ wave under shear stress. Our data suggest that shear-induced longitudinal $Ca^{2+}$ wave may be induced by $Ca^{2+}$-induced $Ca^{2+}$ release through the RyRs which is triggered by $PLC-IP_3R$ signaling in atrial myocytes.

Predictoin of Longitudinal Steel Tension for Shear-Critical Reinforced Concrete Beams with Stirrups (전단이 지배하는 철근콘크리트 보의 주철근 인장력 산정)

  • Rhee, Chang-Shin;Byun, Su-Min;Shin, Geun-Ok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.374-377
    • /
    • 2006
  • The measured longitudinal reinforcement tensions in the shear-critical RC beams were significantly higher than the calculated values by the beam theory. This may be attributed to the reduction of the internal-moment arm length by the development of the arch action. In this paper, the measured longitudinal reinforcement tensions in the test performed by Kim were compared with those predicted by the new truss model on the basis of the compatibility condition of the shear deformation.

  • PDF