• Title/Summary/Keyword: longitudinal joint damage

Search Result 15, Processing Time 0.028 seconds

A modified shell-joint model for segmental tunnel dislocations under differential settlement

  • Jianguo Liu;Xiaohui Zhang;Yuyin Jin;Wenyuan Wang
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.411-424
    • /
    • 2023
  • Reasonable estimates of tunnel lining dislocations in the operation stage, especially under longitudinal differential settlement, are important for the design of waterproof gaskets. In this paper, a modified shell-joint model is proposed to calculate shield tunnel dislocations under longitudinal differential settlement, with the ability to consider the nonlinear shear stiffness of the joint. In the case of shell elements in the model, an elastoplastic damage constitutive model was adopted to describe the nonlinear stress-strain relationship of concrete. After verifying its applicability and correctness against a full-scale tunnel test and a joint shear test, the proposed model was used to analyze the dislocation behaviors of a shield tunnel in Shanghai Metro Line 2 under longitudinal differential settlement. Based on the results, when the tunnel structure is solely subjected to water-earth load, circumferential and longitudinal joint dislocations are all less than 0.1 mm. When the tunnel suffers longitudinal differential settlement and the curvature radius of the differential settlement is less than 300 m, although maximum longitudinal joint dislocation is still less than 0.1 mm, the maximum circumferential joint dislocation is approximately 10.3 mm, which leads to leakage and damage of the tunnel structure. However, with concavo-convex tenons applied to circumferential joints, the maximum dislocation value reduces to 4.5 mm.

Effective Methods Reducing Joint Vibration and Elongation in High speed Rail Bridge (고속철도교 신축부의 진동 및 신축의 효율적인 저감 방안)

  • Min, Kyung-Ju;Kang, Tae-Ku;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.800-806
    • /
    • 2011
  • Thermal expansion which occurs at the high speed rail joint is proportional to the free length from the point of fixity. This thermal expansion behaves similar to free expansion because the girder longitudinal stiffness is much larger than longitudinal resistance of rail pads. But the longitudinal displacement in the long rail is nominal because the longitudinal support condition of the girder is normally MFM(movable-fix-movable) system. Due to these girder expansion characteristics, there is longitudinal relative displacement at the rail pad and rail fastener spring which connects rail and girder. If the relative displacement between rail and girder is beyond the elastic limit for the rail pad, rail fastener system shall be applied using sliding fastener to prevent rail pad damage and fastener separation resulting from slip. On the other hand, train vertical vibration and tilting can occur due to the lack of fastener vertical force if the sliding fastener is applied at the girder joint. In the high speed rail bridge, vibration can occur due to the spring stiffness of the elastomeric bearing, also both vertical downward and upward displacement can occur. The elastomeric bearing vertical movement can cause rail displacement and finally the stability of the ballast is reduced because the gravel movement is induced.

  • PDF

Effect of reinforcing details on seismic behavior of RC exterior wide beam-column joint

  • Jae Hyun Kim;Seung-Ho Choi;Sun-Jin Han;Hoseong Jeong;Jae-Yeon Lee;Kang Su Kim
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.283-296
    • /
    • 2023
  • This paper presents experimental and numerical studies of seismic performance on reinforced concrete (RC) wide beam (WB) joints. Two RC-WB joint specimens and one conventional RC joint specimen were fabricated using the reinforcing details of longitudinal reinforcing bars in a beam as a variable, and quasi-static cyclic loading tests were performed. The results were used to compare and analyze the load-drift ratio relationship, failure mode, and seismic performance of the specimens quantitatively. In addition, a finite element (FE) analysis of the RC-WB joint was conducted, and the rationality of the FE model was validated by comparing it with the test results. Based on the FE model, a parametric study was conducted, where the ratio of longitudinal reinforcing bars placed on the outer and inner parts of the joint (𝜌ex/𝜌in) was a key variable. The results showed that, in the RC-WB joint, an increase of 𝜌ex/𝜌in leads to more severe damage to concrete, which reduces the seismic performance of the RC-WB joints.

Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components

  • Girgin, Sadik Can;Misir, Ibrahim Serkan;Kahraman, Serap
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.229-245
    • /
    • 2017
  • Post-earthquake observations revealed that seismic performance of beam-column connections in precast concrete structures affect the overall response extensively. Seismic design of precast reinforced concrete structures requires improved beam-column connections to transfer reversed load effects between structural elements. In Turkey, hybrid beam-column connections with welded components have been applied extensively in precast concrete industry for decades. Beam bottom longitudinal rebars are welded to beam end plates while top longitudinal rebars are placed to designated gaps in joint panels before casting of topping concrete in this type of connections. The paper presents the major findings of an experimental test programme including one monolithic and five precast hybrid half scale specimens representing interior beam-column connections of a moment frame of high ductility level. The required welding area between beam bottom longitudinal rebars and beam-end plates were calculated based on welding coefficients considered as a test parameter. It is observed that the maximum strain developed in the beam bottom flexural reinforcement plays an important role in the overall behavior of the connections. Two additional specimens which include unbonded lengths on the longitudinal rebars to reduce that strain demands were also tested. Strength, stiffness and energy dissipation characteristics of test specimens were investigated with respect to test variables. Seismic performances of test specimens were evaluated by obtaining damage indices.

Longitudinal Supraspinatus Tear Associated with Antegrade Humeral Intramedullary Nailing: A Case Report and Literature Review with Focus Placed on Nail Entry Point

  • Shon, Min Soo;Bang, Tae Jung;Yoo, Jae Chul
    • Clinics in Shoulder and Elbow
    • /
    • v.18 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • Iatrogenic damage of the rotator cuff followed by postoperative shoulder function loss is a potential complication after antegrade intramedullary nailing (AIN) for a humeral fracture. The authors present a case of arthroscopic rotator cuff repair and subacromial decompression of a non-healed rotator cuff tendon (mainly supraspinatus) and secondary impingement syndrome caused either by the tear or a proud nail after AIN for a mid-shaft humeral fracture. At presentation, the patient complained of right shoulder pain and 'snapping', especially during forward elevation and abduction of the shoulder, of 4 years duration. Right shoulder pain started sometime after pain due to the humeral shaft fracture, operation had subsided, and persisted after nail removal. Arthroscopic findings showed a longitudinal rotator cuff tear at the nail entry point that had not healed and severe fibrous hypertrophy on the acromion underspace, which is a unique finding since most longitudinal splits of tendon fibers are more likely to heal than conventional rotator cuff tears detached from bone. The torn rotator cuff was repaired after debridement and placing side-to-side sutures. At his 34-month follow-up after rotator cuff repair, the patient showed complete recovery and had excellent clinical scores.

Field distribution factors and dynamic load allowance for simply supported double-tee girder bridges

  • Kidd, Brian;Rimal, Sandip;Seo, Junwon;Tazarv, Mostafa;Wehbe, Nadim
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • This paper discusses the field testing of two single-span double-tee girder (DTG) bridges in South Dakota to determine live load distribution factors (LLDFs) and the dynamic load allowance (IM). One bridge had seven girders and another had eight girders. The longitudinal girder-to-girder joints of both bridges were deteriorated in a way that water could penetrate and the joint steel members were corroded. A truck traveled across each of the two bridges at five transverse paths. The paths were tested twice with a crawl speed load test and twice with a dynamic load. The LLDFs and IM were determined using strain data measured during the field tests. These results were compared with those determined according to the AASHTO Standard and the AASHTO LRFD specifications. Nearly all the measured LLDFs were below the AASHTO LRFD design LLDFs, with the exception of two instances: 1) An exterior DTG on the seven-girder bridge and 2) An interior DTG on the eight-girder bridge. The LLDFs specified in the AASHTO Standard were conservative compared with the measured LLDFs. It was also found that both AASHTO LRFD and AASHTO Standard specifications were conservative when estimating IM, compared to the field test results for both bridges.

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Colajanni, Piero;Pagnotta, Salvatore
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.231-248
    • /
    • 2022
  • Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

Fire resistance assessment in construction joint of precast fireproof duct slab (프리캐스트 방식 내화풍도슬래브 시공조인트부의 화재저항성능 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Kim, Se Kwon;Kim, Tae Kyun;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.359-370
    • /
    • 2021
  • Duct slabs, which are used to build ventilation facilities in underground spaces with transverse ventilation system, need to secure fire resistance according to longitudinal and heavy vehicle traffic of tunnels. This study measured the temperature change at the construction joint of the precast fireproof duct slab which integrates fire resistance material and duct slab under the RWS fire scenario. As a result, it was confirmed that if there is no reinforcement of the construction joint, damage will occur in concrete inside the construction joint, leading to damage to the fireproofing layer. On the other hand, when one side of the construction joint was reinforced with fireproofing materials, it showed more than three times the fire resistance performance compared to when there was no reinforcement. At this time, cross-sectional losses of concrete and fireproofing layer were shown in blocks without reinforcement, but no damage was seen in the reinforced blocks.

Safety Assessment of Double Skin Hull Structure against Ultimate Bending and Fatigue Strength (이중선각구조 선박의 최종굽힘강도와 피로강도에 대한 안전성 평가)

  • P.D.C. Yang;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.93-102
    • /
    • 1992
  • In this paper presented is the reliability analysis of a double skinned hull structure against the ultimate bending moment and fatigue strength under longitudinal bending. The ultimate bending strength is obtained through the beam-column approach in which the load-end shortening curves(stress-strain curves) of stiffened plates under mini-axial compression are derived using the concept of plastic hinge collapse. The fatigue damage only is considered as fatigue failure for which the Miner's damage rule is employed. Assessed are fatigue reliability for the possible joint types found at deck structure. Also included is the reliability analysis of a series system of which elements are ultimate and fatigue failure.

  • PDF

Acquired Adult Flatfoot: Pathophysiology, Diagnosis, and Nonoperative Treatment (후천적 성인 편평족: 병태생리, 진단과 비수술적 치료)

  • Sung, Ki-Sun;Yu, In-Sang
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.3
    • /
    • pp.87-92
    • /
    • 2014
  • Acquired adult flatfoot is a deformity characterized by a decreased medial longitudinal arch and a hindfoot valgus with or without forefoot abduction. The etiologies of this deformity include posterior tibial tendon dysfunction, rheumatoid arthritis, trauma, Charcot's joint, neurologic deficit, and damage to the medial spring ligament complex or plantar fascia. Among these, posterior tibial tendon dysfunction is the most well-known cause. Although posterior tibial tendon dysfunction has been regarded as a synonym of acquired adult acquired flatfoot, failure of the ligaments supporting the arch can also result in progressive deformity even without a posterior tibial tendon problem. The authors describe the pathophysiology, diagnosis, and nonoperative treatment of acquired adult flatfoot, focusing on posterior tibial tendon dysfunction.