• Title/Summary/Keyword: longitudinal damage

Search Result 245, Processing Time 0.03 seconds

3D Stereoscopic Terrain Extraction of Road Cut Failure Slope Using Unmanned Helicopter Photography System (무인 헬리콥터 사진촬영시스템을 이용한 도로 절개지 붕괴사면 3차원 입체 지형 추출)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.485-491
    • /
    • 2010
  • Acquisition of information on failure slope, which may cause apprehension of second hand damage, requires acquisition of fast and accurate topographical data and efficient expression in indirect surveying method without accessing as needed. Therefore, in this study, the images on the intended area were photographed through hovering in the air by approaching collapsed road cut slope with the use of unmanned helicopter photography system. As a result of comparing the points observed by no prism total station and the 10 coordinate points analyzed through image analysis, the averages of absolute values were shown to be 0.056m in X axis direction, 0.082m in Y axis direction and 0.066m Z axis direction. In addition, the RMSE of the error for 10 points of test points were 0.015636m in X axis direction, 0.021319m in Y axis direction and 0.018734m in Z axis direction. Therefore, this method can determine the range of slope and longitudinal and cross sections of each slope in dangerous area that cannot be approached in relational image matching method for the terrains of such collapsed cut slope.

Investigations of different steel layouts on the seismic behavior of transition steel-concrete composite connections

  • Qi, Liangjie;Xue, Jianyang;Zhai, Lei
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • This article presents a comparative study of the effect of steel layouts on the seismic behavior of transition steel-concrete composite connections, both experimental and analytical investigations of concrete filled steel tube-reinforced concrete (CFST-RC) and steel reinforecd concrete-reinforced concrete (SRC-RC) structures were conducted. The steel-concrete composite connections were subjected to combined constant axial load and lateral cyclic displacements. Tests were carried out on four full-scale connections extracted from a real project engineering with different levels of axial force. The effect of steel layouts on the mechanical behavior of the transition connections was evaluated by failure modes, hysteretic behavior, backbone curves, displacement ductility, energy dissipation capacity and stiffness degradation. Test results showed that different steel layouts led to significantly different failure modes. For CFST-RC transition specimens, the circular cracks of the concrete at the RC column base was followed by steel yielding at the bottom of the CFST column. While uncoordinated deformation could be observed between SRC and RC columns in SRC-RC transition specimens, the crushing and peeling damage of unconfined concrete at the SRC column base was more serious. The existences of I-shape steel and steel tube avoided the pinching phenomenon on the hysteresis curve, which was different from the hysteresis curve of the general reinforced concrete column. The hysteresis loops were spindle-shaped, indicating excellent seismic performance for these transition composite connections. The average values of equivalent viscous damping coefficients of the four specimens are 0.123, 0.186 and 0.304 corresponding to the yielding point, peak point and ultimate point, respectively. Those values demonstrate that the transition steel-concrete composite connections have great energy dissipating capacity. Based on the experimental research, a high-fidelity ABAQUS model was established to further study the influence of concrete strength, steel grade and longitudinal reinforcement ratio on the mechanical behavior of transition composite connections.

Development of Structural Design Program to apply the Twin-Hull Car-ferry (쌍동형 카페리 구조설계용 프로그램 개발)

  • Lee, Jung-Ho;Oh, Jung-Mo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Twin-hulls frequently incur structural damage at connecting members between the hull and deck induced by pitching motions during voyages. so, reasonable reinforcement is necessary around vulnerable spots such as corner knuckle, the chine bottom and inner hull. Since guidelines for structural design are not clear, engineers often respond by reinforcing plate thickness, changing stiffener sizes and reducing frame spacing, etc. These members constitute about 85 % of the longitudinal dimensions of the ship, so it is necessary to locally reinforce certain points to minimize weight stress, and also solve construction cost problems while securing the freeboard margin. Therefore, we developed a new program by analyzing the structural design procedures for the twin car-ferries based on Korean Register of Shipping (KR) High Speed Craft Rules, identifying items that need to be added. In order to ensure the reliability of buckling estimations for procedures and design programs, we conducted a comparative study with other standards and confirmed that differences were minimal.

Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.399-415
    • /
    • 2023
  • This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.

A Study on the Failure Modes of Neat Kevlar Fabric and Kevlar Liquid Armor Impregnated with Shear Thickening Fluid (케블라 직물과 전단농화유체로 함침된 케블라 액체 방탄재의 파단모드 연구)

  • Yoon, Byung-Il;Song, Heung-Sub;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.17-24
    • /
    • 2007
  • In this study, the failure modes by ballistic impacts were studied both for a neat Kevlar woven fabric and a Kevlar liquid armor impregnated with shear thickening fluid (STF) containing silica particles. These two materials showed quite different failure modes macroscopically in ballistic impacts tests used by Cal.22 FSP and 9mm FMJ bullet. Yarn pull-out for the neat Kevlar woven fabric and yarn fracture occurred partially through all plies from 1st ply to last one for the STF-Kevlar are an important energy absorption mechanisms. The results observed by S.E.M showed commonly fiber damage which are torn skin in the longitudinal fiber direction, fiber split axially and fiber fracture for two materials. The reasons why STF-kevlar liquid armor material exhibits excellent ballistic performance are as follow: firstly the increased friction forces between yarn-yarn and fabric-fabric covered with silica particles and secondary the evolution of shear thickening phenomenmon resulting in suppression of yarn mobility.

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

Classification Abnormal temperatures based on Meteorological Environment using Random forests (랜덤포레스트를 이용한 기상 환경에 따른 이상기온 분류)

  • Youn Su Kim;Kwang Yoon Song;In Hong Chang
    • Journal of Integrative Natural Science
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Many abnormal climate events are occurring around the world. The cause of abnormal climate is related to temperature. Factors that affect temperature include excessive emissions of carbon and greenhouse gases from a global perspective, and air circulation from a local perspective. Due to the air circulation, many abnormal climate phenomena such as abnormally high temperature and abnormally low temperature are occurring in certain areas, which can cause very serious human damage. Therefore, the problem of abnormal temperature should not be approached only as a case of climate change, but should be studied as a new category of climate crisis. In this study, we proposed a model for the classification of abnormal temperature using random forests based on various meteorological data such as longitudinal observations, yellow dust, ultraviolet radiation from 2018 to 2022 for each region in Korea. Here, the meteorological data had an imbalance problem, so the imbalance problem was solved by oversampling. As a result, we found that the variables affecting abnormal temperature are different in different regions. In particular, the central and southern regions are influenced by high pressure (Mainland China, Siberian high pressure, and North Pacific high pressure) due to their regional characteristics, so pressure-related variables had a significant impact on the classification of abnormal temperature. This suggests that a regional approach can be taken to predict abnormal temperatures from the surrounding meteorological environment. In addition, in the event of an abnormal temperature, it seems that it is possible to take preventive measures in advance according to regional characteristics.

Fulminant Course of Acute Necrotizing Encephalopathy Followed by Serial MRI: A Case Report (급격하게 진행한 급성 괴사성 뇌병증 환자의 연속 자기공명영상 소견: 증례 보고)

  • Ji Young Lee;Kyung Mi Lee;Eung Koo Yeon;Eun Hye Lee;Eui Jong Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1274-1280
    • /
    • 2021
  • Acute necrotizing encephalopathy (ANE) is a rare but distinctive type of influenza-associated encephalopathy characterized by symmetric multiple lesions with an invariable thalamic involvement. Although the exact pathogenesis of ANE remains unclear, the most prevalent hypothesis is the "cytokine storm," which results in blood-brain-barrier breakdown. We present the case of a 10-year-old boy with fulminant ANE confirmed with serial MRI studies, including diffusion-weighted imaging and susceptibility-weighted imaging. A comparison of these serial images demonstrated detailed and longitudinal changes in MRI findings during the clinical course corresponding to pathophysiological changes. Our case clarifies the pathogenesis of ANE brain lesions using serial imaging studies and suggests that early immunomodulatory therapy reduces brain damage.

The Effect of Moisture Content on the Compressive Properties of Korean Corn Kernel (함수율(含水率)이 옥수수립(粒)의 압축특성(壓縮特性)에 미치는 영향(影響))

  • Lee, Han Man;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.113-122
    • /
    • 1986
  • In order to promote mechanization of corn harvesting in Korea, this study was conducted to find out the effect of moisture content on compressive properties such as force, deformation, energy and modulus of stiffness to the bioyield and the rupture point for Korean corn kernel. In this study, the loading positions of corn were flat, edge, longitude and the moisture contents were about 13, 17, 21, 25% in wet basis. The compression test was carreied out with flat plate by use of dynamic straingage for three varieties of Korean corn under quasi-static force when the loading rate was 1.125mm/min. The results of this study are summarized as follows; 1. When the moisture content of corn ranged from 12.5 to 24.5 percent, at flat position, the bioyied force was in the range of 13.63-26.73 kg and the maximum compressive strength was in the range of 21.55-47.65kg. Their values were reached minimum at about 17% and maximum at about 21% moisture content. The bioyield force was in the range of 13.58-6.70kg at edge position and the maximum compressive strength which was 16.42 to 7.82kg at edge position was lower than that which was 18.55-9.05kg at longitudinal position. 2. Deformation of corn varied from 0.43 to 1.37 mm at bioyield point and from 0.70 to 2.66mm at rupture point between 12.5 to 24.5% moisture content. As the moisture content increased, deformation was increased. 3. The moduli of resilience and toughness of corn ranged from 2.60 to 8.57kg. mm and from 6.41 to 34.36kg. mm when the moisture content ranged from 12.5 to 24.5 percent, respectively. As the moisture content increased, the modulus of toughness was increased at edge position and decreased at longitudinal position. And their values were equal each other at 22-23% moisture content. 4. The modulus of stiffness was decreased with increase in the moisture content. Its values ranged from 32.07 to 5.86 kg/mm at edge position and from 42.12 to 18.68kg/mm at flat position, respectively. Also, the values of Suweon 19 were higher than those of Buyeo. 5. It was considered that the compressive properties of corn at flat position were more important on the design data for corn harvesting and processing machinery than those of edge or longitudinal position. Also, grinding energy would be minimized when a corn was processed between about 12.5 to 17% moisture content and corn damage would be reduced when a corn was handled between about 19 to 24% moisture content in wet basis.

  • PDF