최장 공통 부분 서열(Longest Common Subsequence, LCS)은 서열 유사도(Similarity)를 측정하기 위한 주요 지표 중 하나로 특별한 가정이 없는 한 두 문자열의 LCS 를 계산하기 위해서는 두 문자열의 길이의 곱에 비례하는 시간이 필요하다. 최근 최장(longest)이라는 조건을 극대(maximal)로 완화한 극대 공통 부분 서열(Maximal Common Subsequence, MCS)이 제시되었고, 두 문자열의 MCS 를 선형에 가까운 시간에 찾는 알고리즘이 개발되었다. 극대는 최장을 보장하지 않기 때문에 두 문자열의 MCS 길이는 LCS 길이와 달리 유일하지 않을 수 있고, LCS 길이가 매우 길어도 길이가 1인 MCS가 존재할 수도 있다. 본 논문에서는 기존 알고리즘에 의해 계산되는 MCS 의 효용성을 알아보기 위해, DNA 등 여러 종류의 실제 데이터와 랜덤 생성된 데이터에 대해 LCS 와 MCS 의 길이를 비교했다. MCS 길이는 LCS 길이 대비 실제 데이터에서 32.1 ~ 60.2%, 랜덤 데이터에서는 27.5 ~ 62.9%로 나타났다. 이 비율은 문자열을 이루고 있는 알파벳 수가 많을수록, 문자열의 길이가 길어질수록 감소했다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.9
/
pp.4491-4509
/
2017
The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.
Music evokes human emotions or creates music moods through various low-level musical features. Typical music clip consists of one or more moods and this can be used as an important criteria for determining the similarity between music clips. In this paper, we propose a new music retrieval scheme based on the mood change patterns of music clips. For this, we first divide music clips into segments based on low level musical features. Then, we apply K-means clustering algorithm for grouping them into clusters with similar features. By assigning a unique mood symbol for each cluster, we can represent each music clip by a sequence of mood symbols. Finally, to estimate the similarity of music clips, we measure the similarity of their musical mood sequence using the Longest Common Subsequence (LCS) algorithm. To evaluate the performance of our scheme, we carried out various experiments and measured the user evaluation. We report some of the results.
Nowadays, Genomic data constitutes one of the fastest growing datasets in the world. As of 2025, it is supposed to become the fourth largest source of Big Data, and thus mandating adequate high-performance computing (HPC) platform for processing. With the latest unprecedented and unpredictable mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the research community is in crucial need for ICT tools to process SARS-CoV-2 RNA data, e.g., by classifying it (i.e., clustering) and thus assisting in tracking virus mutations and predict future ones. In this paper, we are presenting an HPC-based SARS-CoV-2 RNAs clustering tool. We are adopting a data science approach, from data collection, through analysis, to visualization. In the analysis step, we present how our clustering approach leverages on HPC and the longest common subsequence (LCS) algorithm. The approach uses the Hadoop MapReduce programming paradigm and adapts the LCS algorithm in order to efficiently compute the length of the LCS for each pair of SARS-CoV-2 RNA sequences. The latter are extracted from the U.S. National Center for Biotechnology Information (NCBI) Virus repository. The computed LCS lengths are used to measure the dissimilarities between RNA sequences in order to work out existing clusters. In addition to that, we present a comparative study of the LCS algorithm performance based on variable workloads and different numbers of Hadoop worker nodes.
Since the introduction of BitTorrent protocol in 2001, everything can be downloaded through file sharing, including music, movies and software. As a result, the copyright holder suffers from illegal sharing of copyright content. In order to solve this problem, countries have enacted illegal share related law; and internet service providers block pirate sites. However, illegal sites such as pirate bay easily reopen the site by changing the domain name. Thus, we propose a technique to easily detect pirate sites that are reopened. This automated technique collects the domain names using the google search engine, and measures similarity using Longest Common Subsequence (LCS) algorithm by comparing the tag structure of the source web page and reopened web page. For evaluation, we colledted 2,383 domains from google search. Experimental results indicated detection of a total of 44 pirate sites for collected domains when applying LCS algorithm. In addition, this technique detected 23 pirate sites for 805 domains when applied to foreign pirate sites. This experiment facilitated easy detection of the reopened pirate sites using an automated detection system.
The service that has recently come into the spotlight utilizes the map to first approach the map and then provide various mash-up formed results through the interface. This service can provide precise information to the users but the map is barely reusable. The sketch-map system of this paper, unlike the existing large map system, uses the method of presenting the specific spot and route in XML document and then clustering among sketch-maps. The map service system is designed to show the optimum route to the destination in a simple outline map. It is done by renovating the spot presented by the map into optimum contents. This service system, through the process of analyzing, splitting and clustering of the sketch-map's XML document input, creates a valid form of a sketch-map. It uses the LCS(Longest Common Subsequence) algorithm for splitting and merging sketch-map in the process of query. In addition, the simulation of this system's expected effects is provided. It shows how the maps that share information and knowledge assemble to form a large map and thus presents the system's ability and role as a new research portal.
음악에서는 다양한 감정의 표현을 시간에 따른 음악 무드의 전이로 표현한다. 본 연구에서는 Longest Common Subsequence (LCS) 알고리즘 및 k-Means 알고리즘에 기반한 유사 음악 검색 기법을 제안한다. 우선, 음악 무드의 흐름을 무드 세그먼트 단위로 나누고, 이를 추출된 다양한 음악 특성을 k-Means 알고리즘으로 분류하여 무드 시퀀스로 변환한다. 또한, 유사한 무드의 흐름을 가지는 음악을 검색하기 위해 LCS 알고리즘에 기반한 무드 시퀀스의 유사도를 정의한다. 본 논문은 제안된 내용을 바탕으로 실험과 설문 조사를 통해, 기존의 전역적 특성 검색 방식보다 시퀀스를 이용한 검색방식이 좀 더 효율적임을 증명하였다.
In this paper we present INCUI, a user interface based on natural view of physical user interface of target devices and services in pervasive computing environment. We present a concept of Intuitively Natural and Consistent User Interface (INCUI) consisted of an image of physical user interface and a description XML file. Then we elaborate how INCUI template can be used to consistently map user interface components structurally and visually. We describe the process of INCUI mapping and a novel mapping method selection architecture based on domain size, types of source and target INCUI. Especially we developed and applied an extended LCS-based algorithm using prefix/postfix/synonym for similarity calculation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.