최장 공통 부분 서열(Longest Common Subsequence, LCS)은 서열 유사도(Similarity)를 측정하기 위한 주요 지표 중 하나로 특별한 가정이 없는 한 두 문자열의 LCS 를 계산하기 위해서는 두 문자열의 길이의 곱에 비례하는 시간이 필요하다. 최근 최장(longest)이라는 조건을 극대(maximal)로 완화한 극대 공통 부분 서열(Maximal Common Subsequence, MCS)이 제시되었고, 두 문자열의 MCS 를 선형에 가까운 시간에 찾는 알고리즘이 개발되었다. 극대는 최장을 보장하지 않기 때문에 두 문자열의 MCS 길이는 LCS 길이와 달리 유일하지 않을 수 있고, LCS 길이가 매우 길어도 길이가 1인 MCS가 존재할 수도 있다. 본 논문에서는 기존 알고리즘에 의해 계산되는 MCS 의 효용성을 알아보기 위해, DNA 등 여러 종류의 실제 데이터와 랜덤 생성된 데이터에 대해 LCS 와 MCS 의 길이를 비교했다. MCS 길이는 LCS 길이 대비 실제 데이터에서 32.1 ~ 60.2%, 랜덤 데이터에서는 27.5 ~ 62.9%로 나타났다. 이 비율은 문자열을 이루고 있는 알파벳 수가 많을수록, 문자열의 길이가 길어질수록 감소했다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권9호
/
pp.4491-4509
/
2017
The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.
음악은 다양한 하위 레벨 음악 특징을 통하여 인간의 감정을 유발시키거나 음악적 무드를 만들어낸다. 보통 음악은 하나 이상의 무드로 구성되며 이것은 음악간 유사도를 결정하는 데 주요한 단서로 사용된다. 본 논문에서는 음악의 무드 변화 패턴을 기반으로 하는 새로운 음악 검색 기법을 제안한다. 이를 위해서, 우선 모든 음악에 대해 유사한 하위 레벨 특징을 가지는 세그먼트로 나누고, K-means 군집화 알고리즘을 적용하여 유사한 특징을 가지는 클러스터로 그룹화한다. 각 클러스터에 대해 유일한 무드 심볼을 정의하고 나면, 각 음악의 무드 변화 패턴은 일련의 무드 심볼 시퀀스로 표현이 가능하다. 마지막으로 음악간 유사도를 측정하기 위해서 longest common subsequence (LCS)알고리즘을 적용한다. 제안된 검색 기법의 성능을 측정하기 위해 다양한 실험과 사용자 만족도 조사를 수행하고 결과를 분석한다.
Nowadays, Genomic data constitutes one of the fastest growing datasets in the world. As of 2025, it is supposed to become the fourth largest source of Big Data, and thus mandating adequate high-performance computing (HPC) platform for processing. With the latest unprecedented and unpredictable mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the research community is in crucial need for ICT tools to process SARS-CoV-2 RNA data, e.g., by classifying it (i.e., clustering) and thus assisting in tracking virus mutations and predict future ones. In this paper, we are presenting an HPC-based SARS-CoV-2 RNAs clustering tool. We are adopting a data science approach, from data collection, through analysis, to visualization. In the analysis step, we present how our clustering approach leverages on HPC and the longest common subsequence (LCS) algorithm. The approach uses the Hadoop MapReduce programming paradigm and adapts the LCS algorithm in order to efficiently compute the length of the LCS for each pair of SARS-CoV-2 RNA sequences. The latter are extracted from the U.S. National Center for Biotechnology Information (NCBI) Virus repository. The computed LCS lengths are used to measure the dissimilarities between RNA sequences in order to work out existing clusters. In addition to that, we present a comparative study of the LCS algorithm performance based on variable workloads and different numbers of Hadoop worker nodes.
2001년 비트토렌트 프로토콜이 설계된 후로 음악, 영화, 소프트웨어 등 모든 것을 다운로드할 수 있게 되었다. 이를 통해 저작권이 있는 파일이 무분별하게 공유가 되었고 저작권자들은 많은 피해를 입었다. 이 문제를 해결하기 위해 국가에서는 관련법을 제정하였고 ISP는 불법 사이트를 차단하였다. 이러한 노력들에도 불구하고 pirate bay와 같은 불법 사이트들은 도메인을 바꾸는 등 쉽게 사이트를 재오픈하고 있다. 이에 우리는 재오픈된 불법 사이트를 쉽게 탐지하는 기술을 제안한다. 이 자동화 기술은 구글 검색엔진을 이용하여 도메인을 수집하고, 최장공통부분수열(LCS) 알고리즘을 이용하여 기존 웹페이지 태그와 검색된 웹페이지 태그를 비교, 유사도를 측정한다. 실험을 위해 총 2,383개의 검색 결과를 구글 검색으로 얻었다. LCS 유사도 알고리즘을 적용하여 검사한 결과 44개의 해적 사이트를 탐지하였다. 또한 해외 불법 사이트에 적용한 결과 805개 검색 도메인에서 23개의 불법 사이트를 탐지하였다. 이를 통해 제안된 탐지 자동화 기술을 사용한다면 불법 사이트가 재 오픈을 하더라도 쉽게 탐지할 것으로 보인다.
최근 각광을 받고 있는 지도(이하 맵)를 활용한 서비스는 맵에 접근한 후 인터페이스를 통해 다양한 매쉬업 형태의 결과를 제공하는 방식이다. 이러한 서비스는 사용자에게 정확한 정보를 제공할 수는 있지만 맵의 재활용은 어렵다. 본 논문의 스케치맵 시스템은 기존의 대형 맵 시스템과는 달리 목적에 부합하는 특정 지점과 경로를 XML 문서로 표현한다. 또한, 스케치맵 간에 클러스터링 방법을 사용함으로써 맵에서 표현되는 지점을 최적의 내용으로 갱신한다. 그 결과로서, 목적지점에 대한 경로를 간단하게 약도로 표현하기 위해 설계된 맵 서비스 시스템이다. 본 시스템은 스케치 맵의 XML 문서 입력에 대하여 스케치맵 생성기에서 분석 분할 클러스터링의 과정을 통해 유효한 형태의 스케치맵을 생성한다. 스케치맵의 분할 및 병합을 위한 질의처리 방법으로는 LCS(Longest Common Subsequence) 알고리즘을 사용하였다. 또한, 본 스케치맵 시스템에 대한 기대효과를 시뮬레이션으로 제시하여 정보와 지식을 공유하는 보이는 맵들이 모여 거대한 맵을 형성함으로서 새로운 검색 포털로서의 역할을 수행할 수 있음을 보인다.
음악에서는 다양한 감정의 표현을 시간에 따른 음악 무드의 전이로 표현한다. 본 연구에서는 Longest Common Subsequence (LCS) 알고리즘 및 k-Means 알고리즘에 기반한 유사 음악 검색 기법을 제안한다. 우선, 음악 무드의 흐름을 무드 세그먼트 단위로 나누고, 이를 추출된 다양한 음악 특성을 k-Means 알고리즘으로 분류하여 무드 시퀀스로 변환한다. 또한, 유사한 무드의 흐름을 가지는 음악을 검색하기 위해 LCS 알고리즘에 기반한 무드 시퀀스의 유사도를 정의한다. 본 논문은 제안된 내용을 바탕으로 실험과 설문 조사를 통해, 기존의 전역적 특성 검색 방식보다 시퀀스를 이용한 검색방식이 좀 더 효율적임을 증명하였다.
본 논문에서는 대상기기 및 서비스의 물리적 인터페이스 영상에 기반을 둔 인터페이스인 INCUI (Intuitively Natural and Consistent User Interface)를 제시한다. 물리적 인터페이스의 영상과 XML 형식으로 기술 되는 INCUI의 개념을 소개하고, 정의된 INCUI 템플릿을 통해 사용자 인터페이스 요소간 일관성 있는 매핑을 수행하는 방법을 설명한다. 또한 INCUI 형태의 사용자 인터페이스간 매핑을 위해 도메인 크기, 소스 및 타겟 인터페이스의 유형에 따라 선택적으로 세부 매핑 알고리즘을 선택하는 새로운 매핑 구조를 제안한다. 특히 기존 문자열 기반의 LCS (Longest Common Subsequence) 알고리즘의 단점을 보완하여 접두사/접미사/동의어 정보를 활용하는 확장된 유사도 계산 알고리즘을 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.