• Title/Summary/Keyword: long-term wave data

Search Result 145, Processing Time 0.022 seconds

Study on Development of Digital Ocean Information Contents for Climate Change and Environmental Education : Focusing on the 3D Simulator Experiencing Sea Level Rise (기후변화 환경교육을 위한 디지털 해양정보 콘텐츠 개발 방안 연구 - 해수면 상승 체험 3D 시뮬레이터를 중심으로 -)

  • Jin-Hwa Doo;Hong-Joo Yoon;Cheol-Young Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.953-964
    • /
    • 2023
  • Climate change is undeniably the most urgent challenge that humanity faces today. Despite this, the level of public awareness and understanding of climate change remains insufficient, indicating a need for more proactive education and the development of supportive content. In particular, it is crucial to intensify climate change education during elementary and secondary schooling when values and ethical consciousness begin to form. However, there is a significant lack of age-appropriate, experiential educational content. To address this, our study has developed an innovative 3D simulator, enabling learners to indirectly experience the effects of climate change, specifically sea-level rise. This simulator considers not only sea-level rise caused by climate change but also storm surges, which is a design based on the analysis of long-term wave observation big data. To make the simulator accessible and engaging for students, we utilized the 'Unity' game engine. We further propose using this simulator as a part of a comprehensive educational program on climate change.

Derivation of Digital Music's Ranking Change Through Time Series Clustering (시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류)

  • Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-191
    • /
    • 2020
  • This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the "Gaon Chart," a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music. Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before 'the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the "Gaon Chart", a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: 'Steady Seller' and 'One-Hit Wonder'. Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the 'Climbing the Chart' phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF

Prediction of a hit drama with a pattern analysis on early viewing ratings (초기 시청시간 패턴 분석을 통한 대흥행 드라마 예측)

  • Nam, Kihwan;Seong, Nohyoon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.33-49
    • /
    • 2018
  • The impact of TV Drama success on TV Rating and the channel promotion effectiveness is very high. The cultural and business impact has been also demonstrated through the Korean Wave. Therefore, the early prediction of the blockbuster success of TV Drama is very important from the strategic perspective of the media industry. Previous studies have tried to predict the audience ratings and success of drama based on various methods. However, most of the studies have made simple predictions using intuitive methods such as the main actor and time zone. These studies have limitations in predicting. In this study, we propose a model for predicting the popularity of drama by analyzing the customer's viewing pattern based on various theories. This is not only a theoretical contribution but also has a contribution from the practical point of view that can be used in actual broadcasting companies. In this study, we collected data of 280 TV mini-series dramas, broadcasted over the terrestrial channels for 10 years from 2003 to 2012. From the data, we selected the most highly ranked and the least highly ranked 45 TV drama and analyzed the viewing patterns of them by 11-step. The various assumptions and conditions for modeling are based on existing studies, or by the opinions of actual broadcasters and by data mining techniques. Then, we developed a prediction model by measuring the viewing-time distance (difference) using Euclidean and Correlation method, which is termed in our study similarity (the sum of distance). Through the similarity measure, we predicted the success of dramas from the viewer's initial viewing-time pattern distribution using 1~5 episodes. In order to confirm that the model is shaken according to the measurement method, various distance measurement methods were applied and the model was checked for its dryness. And when the model was established, we could make a more predictive model using a grid search. Furthermore, we classified the viewers who had watched TV drama more than 70% of the total airtime as the "passionate viewer" when a new drama is broadcasted. Then we compared the drama's passionate viewer percentage the most highly ranked and the least highly ranked dramas. So that we can determine the possibility of blockbuster TV mini-series. We find that the initial viewing-time pattern is the key factor for the prediction of blockbuster dramas. From our model, block-buster dramas were correctly classified with the 75.47% accuracy with the initial viewing-time pattern analysis. This paper shows high prediction rate while suggesting audience rating method different from existing ones. Currently, broadcasters rely heavily on some famous actors called so-called star systems, so they are in more severe competition than ever due to rising production costs of broadcasting programs, long-term recession, aggressive investment in comprehensive programming channels and large corporations. Everyone is in a financially difficult situation. The basic revenue model of these broadcasters is advertising, and the execution of advertising is based on audience rating as a basic index. In the drama, there is uncertainty in the drama market that it is difficult to forecast the demand due to the nature of the commodity, while the drama market has a high financial contribution in the success of various contents of the broadcasting company. Therefore, to minimize the risk of failure. Thus, by analyzing the distribution of the first-time viewing time, it can be a practical help to establish a response strategy (organization/ marketing/story change, etc.) of the related company. Also, in this paper, we found that the behavior of the audience is crucial to the success of the program. In this paper, we define TV viewing as a measure of how enthusiastically watching TV is watched. We can predict the success of the program successfully by calculating the loyalty of the customer with the hot blood. This way of calculating loyalty can also be used to calculate loyalty to various platforms. It can also be used for marketing programs such as highlights, script previews, making movies, characters, games, and other marketing projects.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.