• Title/Summary/Keyword: long-term simulation

Search Result 762, Processing Time 0.024 seconds

Hydraulic feasibility study on the open-loop geothermal system using a pairing technology (복수정 페어링 기술을 이용한 개방형 지열 시스템의 수리적 타당성 검토)

  • Bae, Sangmu;Kim, Hongkyo;Kim, Hyeon-woo;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Purpose: Groundwater heat pump (GWHP) system has high coefficient of performance than conventional air-source heat pump system and closed-loop type geothermal system. However, there is problem in long-term operation that groundwater raise at the diffusion well and reduced at the supply well. Therefore, it is necessary to accurately predict the groundwater flow, groundwater movement and control the groundwater level in the wells. In this research, in consideration of hydrogeological characteristic, groundwater level and groundwater movement were conducted analysis in order to develop the optimal design method of the two-well system using the pairing pipe. Method: For the optimum design of the two-well system, this research focused on the design method of the pairing pipe in the simulation model. Especially, in order to control the groundwater level in wells, pairing pipe between the supply well and diffusion well was developed and the groundwater level during the system operation was analyzed by the numerical simulation. Result: As the result of simulation, the groundwater level increased to -2.65m even in the condition of low hydraulic conductivity and high pumping flow rate. Consequently, it was found that the developed system can be operated stably.

Simulation-based Yield-per-recruit Analysis of Pacific Anchovy Engraulis japonicus in the Korea Strait with Varying Fisheries Regulations (모의실험을 통한 남해 멸치(Engraulis japonicus)의 어획조건에 따른 가입당 생산 분석)

  • Lee, Kyunghwan;Go, Seonggil;Jung, Sukgeun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.437-446
    • /
    • 2017
  • To evaluate the consequences of possible fisheries regulations of anchovy Engraulis japonicus in the Korea Strait, we developed and applied a simulation-based yield-per-recruit (Y/R) model that considered temperature-dependent growth and size-dependent mortality, covering the egg to adult stages. We projected changes in commercial yield and egg production of anchovy with respect to varying biological reference points of 1) the instantaneous fishing mortality, 2) the minimum fork length of anchovy allowed to catch for protecting smaller anchovy ($L_{c,min}$), and 3) the maximum fork length allowed to catch for protecting bigger anchovy ($L_{c,max}$). Our Y/R model showed that the anchovy yield will be maximized at ca. $1.4{\times}10^6tons$ when $L_{c,min}$ ranges between 42-60 mm or at ca. $0.8{\times}10^6tons$ when $L_{c,max}$ ranges from 88-160 mm. At $L_{c,min}=30mm$, the present minimum length of catch, our simulations indicated that the anchovy yield can reach a maximum of $1.2{\times}10^6tons$ in the long-term when the present fishing effort, which annually yields ca. $0.2{\times}10^6tons$ of anchovy, can be increased by a factor of 28. We expect that our simulation-based Y/R model can be applied to other commercially-important small pelagic species in which the traditional Beverton-Holt Y/R model is difficult to apply.

Criteria for calculation of CSO volume and frequency using rainfall-runoff model (우수유출 모형을 이용한 합류식하수관로시스템의 월류량, 월류빈도 산정 기준 결정 연구)

  • Lee, Gunyoung;Na, Yongun;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.313-324
    • /
    • 2013
  • It is widely known that untreated Combined Sewer Overflows (CSOs) that directly discharged from receiving water have a negative impact. Recent concerns on the CSO problem have produced several large scale constructions of treatment facilities, but the facilities are normally designed under empirical design criteria. In this study, several criteria for defining CSOs (e.g. determination of effective rainfall, sampling time, minimum duration of data used for rainfall-runoff simulation and so on) were investigated. Then this study suggested a standard methodology for the CSO calculation and support formalized standard on the design criteria for CSO facilities. Criteria decided for an effective rainfall was over 0.5 mm of total rainfall depth and at least 4 hours should be exist between two different events. An Antecedent dry weather period prior to storm event to satisfy the effective rainfall criteria was over 3 days. Sampling time for the rainfall-runoff model simulation was suggested as 1 hour. A duration of long-term simulation CSO overflow and frequency calculation should be at least recent 10 year data. A Management plan for the CSOs should be established under a phase-in of the plan. That should reflect site-specific conditions of different catchments, and formalized criteria for defining CSOs should be used to examine the management plans.

Simulations of Reduction Effects on Runoff and Sediment for VFS Applications by Considering Uplands Characteristics in Iksan (익산 밭경지 특성을 고려한 초생대 유출 및 유사 저감효과 모의)

  • Lee, Seul Gi;Jang, Jeong Ryeol;Choi, Kyung Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.89-99
    • /
    • 2014
  • The goal of this study was to evaluate sediment reduction effects of VFS (vegetative filter strip) applied for Iksan area in Saemangeum watershed. This study simulated runoff and sediment load from different types of uplands using VFSMOD-W. The general upland characteristics of the study area was investigated to build reasonable scenarios of the simulation. The simulation scenarios were designed by various areas, shapes, and slopes of uplands. Grass mixture was selected as VFS vegetation and the size of VFS was fixed as 10 % of uplands area. Additionally 50mm, 100mm, 150mm of daily rainfall were applied for the runoff and sediment simulation. As results, the calculated runoff and sediment loads were obtained $20.7{\sim}1,030.6m^3$ and 568.4~675,731.4 kg for the range of 0.1~1.0 ha of uplands with 7 % and 15 % slopes. The reduction effects on runoff and sediment were obtained 5~10 % and 21.0~47.7 % respectively from VFS applications. The VFSMOD-W simulations showed that runoff tended to increase as upland area and amount of rainfall increased while sediment increased when slope, length and area of uplands and amount of rainfall increased. These results indicated that rainfall amount and upland size are the critical factors for the generation of runoff and sediment load. In order to support this conclusion, further studies such as, long term monitoring, field experiments, and to calibrate and evaluate the model are necessary.

Change of Fish Habitat in a Downstream Reach of a Stream Due to Dam Construction (댐 건설에 따른 하류 하도 어류 서식처 변화 분석)

  • Kim, Seung Ki;Choi, Sung-Uk
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Dam construction changes flow regime and stream morphology in the downstream reach. These affect the ecosystem of downstream reach. This study provides the assessment of the impact of dam construction on the downstream fish habitat. For this, physical habitat simulations are carried out. The quasi-steady model is used for hydraulic simulation, The hydraulic model used in the present study is capable of simulating the morphological change due to sediment transport. The change of the fish habitat condition is investigated using the flow scenarios before and after the dam construction. Simulation results indicate that the habitat suitability decreases frequently due to hydropeaking after dam construction. In addition, erosion is expected to occur in a reach downstream of dam. This is a long term effect due to the shut-down of sediment supply from the upstream reach.

A Study on the Sediment Movement Using Numerical Models (수치모형을 이용한 하상변동 연구)

  • Im, Chang-Su;Son, Gwang-Ik;Lee, Jae-Jun;Yun, Se-Ui
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.131-142
    • /
    • 1999
  • In this study, one and semi-two dimensional numerical models were applied to study on the hydraulic and sedimentologic characteristics of upstream and downstream channel section near the Buyeo intake towers. The HEC-6 model was applied for the simulation of one dimensional sediment movement from 1988 to 1996, and GSTARS model was applied for the simulation of semi-two dimensional sediment movement for the same period. After the verification of accuracy of HEC-6 and GSTARS models, the models were applied again to predict the sediment movement near intake towers from 1988 to 2001. In this case, measured channel section of 1988 was used as an initial channel condition, and used to predict the long-term variation of channel section of 2001 after 13 years since 1988. The simulation results show that the channel bed is sedimented and eroded repeatedly in the main channel of overall study area, and that channel bed is getting elevated in the near Buyeo intake towers.

  • PDF

Improvement for the Catastrophic Health Expenditure Support Program (재난적 의료비 지원사업 개선방안)

  • Jeong-Yeon Seon;Seungji Lim;Hae Jong Lee;Eun-Cheol Park
    • Health Policy and Management
    • /
    • v.33 no.2
    • /
    • pp.166-172
    • /
    • 2023
  • Background: To improve the support low-income individuals' medical expenses, it is necessary to think about ways to enhance the Catastrophic Health Expenditure Support Program. This study proposes expanding support criteria and changing the income standard. Methods: This study conducted simulations using national data from the National Health Insurance Service. Simulations performed for people who have used health services (n=172,764) in 2022 to confirm the Catastrophic Health Expenditure Support Program's size based on changes to the subject selection criteria. Results: As a result of the simulation with expanded criteria, the expected budget was estimated to increase between Korean won (KRW) 13.2 (11.5%) and 138.6 billion (37.4%), and the number of recipients increased between 41,979 (48.9%) and 150,317 (76.1%). The results of the simulation for the change in income criteria (applied to health insurance levels below the 50th percentile) estimated the expected budget to increase between KRW -8.9 (-7.8%) and 55.6 billion (15.0%) and the number of recipients to increase between -8,704 (-10.1%) and 41,693 (21.1%) compared to the current standard. Conclusion: The 2023 Catastrophic Health Expenditure Support Program's criteria were expanded as per the 20th Presidential Office's national agenda to alleviate the burden of medical expenses on the low-income class. In addition, The Catastrophic Health Expenditure Support Program needs to be integrated with other medical expense support policies in the mid- to long-term, and a foundation must be prepared to ensure the consistency of each system.

Evidence of Difference on the Results of VAR Analysis Impacted the Time Frequency and Time Span of Time Series Data (시계열 자료의 관찰빈도 및 기간이 VAR 분석결과에 미치는 영향 차이 검증 - 한국 환율과 주가를 중심으로 -)

  • Hwang, Yun Seop;Yoo, Seung Jick;Kim, Soo Eun
    • International Area Studies Review
    • /
    • v.13 no.1
    • /
    • pp.81-102
    • /
    • 2009
  • The discussion of the relationship between macro-economic variables is very important research topic. the most economic variables discussed in connection with the liberalization of capital is the exchange rate and stock prices and these two variables have a relationship of mutual influence are identified. However, the results on the time frequency and the time span of a variable appear differently. Therefore, the purpose of this research describes a cause that the result of prior research varied and presents more reliable research methodology. In this research, when the time frequency and span varied, the VAR analysis of the exchange rate and stock prices appeared differently. So, we use the Monte Carlo simulation method in order to performing our purpose. Our research supports the existing research said the ratio that each coefficient VAR model contained 95% confidence interval of estimated coefficient in Monte Carlo simulation is higher when it is applied more the long term and frequent observation.

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

Development of Model for Optimal Concession Period in PPPs Considering Traffic Risk (교통량 위험을 고려한 도로 민간투자사업 적정 관리운영기간 산정 모형 개발)

  • KU, Sukmo;LEE, Seungjae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.421-436
    • /
    • 2016
  • Public-Private-Partnerships tend to be committed high project development cost and recover the cost through future revenue during the operation period. In general, long-term concession can bring on more revenue to private investors, but short-term concession less revenue due to the short recovering opportunities. The concession period is usually determined by government in advance or by the private sectors's proposal although it is a very crucial factor for the PPPs. Accurate traffic forecasting should be most important in planing and evaluating the operation period in that the forecasted traffic determines the project revenue with user fees in PPPs. In this regards, governments and the private investors are required to consider the traffic forecast risk when determining concession period. This study proposed a model for the optimal concession period in the PPPs transportation projects. Monte Carlo simulation was performed to find out the optimal concession period while traffic forecast uncertainty is considered as a project risk under the expected return of the private sector. The simulation results showed that the optimal concession periods are 17 years and 21 years at 5.5% and 7% discount level, respectively. This study result can be applied for the private investors and/or any other concerned decision makers for PPPs projects to set up a more resonable concession period.