• Title/Summary/Keyword: long-term simulation

Search Result 762, Processing Time 0.033 seconds

A Dynamic Analysis and Simulation Modeling of Corporate Growth - A Telecommunication Carrier (H Company) Case - (동태적 기업성장 분석과 시뮬레이션 모델구축 - H통신사업자 사례를 중심으로 -)

  • 최남희;홍민기;전재호
    • Korean System Dynamics Review
    • /
    • v.3 no.1
    • /
    • pp.5-42
    • /
    • 2002
  • The main purpose of this paper is analyzing long-term growth possibility of a telecommunication Company (Telco) H. First of all, to achieve this purpose, the precise understanding about causal relations among growth and decay factors of Telco H is required. Based upon the causal analysis, a basic computer simulation model is developed. Finally, several predictive examinations about growth possibility and pattern of the Telco H are conducted using three scenarios. From simulation results, the most important policy leverages are capabilities of market share sustenance, improvement of service quality and squeezing current network facility to elevate profitability and efficiency. Recently, telecommunication industry has become more and more competitive due to introduction of Internet and deregulation. Internet has brought about global competition as well as confusion between telecommunication and broadcasting industries. At the almost same time, deregulation is a universal tendency and a catalyst of unlimited competition. Telco H has been a dominant company in Korea for last century. However, the dominant position of Telco H has been threatened by the change of competition environment. The competitive environment has many elements and keeps changing dynamically. Therefore, System Dynamics simulation methodology is adopted to examine the problem.

  • PDF

Intra-organizational Conflict and Innovative Performance in Media Industry: An Exploratory Simulation Study

  • Cheon, Youngjoon;Jeong, Seong Bin;Kwak, Kyu Tae
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • Media industry is attempting various types of strategic innovation in the content and organization as they enter transition period. However, previous research has casually treated the organizational culture from the management and realized that cognitive/cultural differences between the specific departments yield conflicts. This means the researchers explored less on the decision-making process with the conflict between sub-groups and constituent in the organization. Our study reviewed the most positive method to achieve the innovation outcome through the conflict management within the organization based on the behavioral theory of the firm and applied computer simulation model for analysis to construct the quantitative scenario and infer the result. Conflict always found while media organization experiences innovation within the groups. However, in the long term, securing the independence through the certain state of 'anarchy' which possibly lead consensus implies significance rather to comprise collegiate system for unilateral control. In specific, this study explored the issues in 'conflict management' that has been evaded in media organization research through NK simulation model.

Development of Local-Exposure Systems for In Vivo Studies at Mobile-Phone Frequency Bands (이동통신 주파수 대역에서의 동물 실험용 국부 노출 장치 개발)

  • Ko Chea-Ok;Park Min-Young;Doh Hyeon-Jeong;Kim Jeong-Lan;Jung Ki-Bum;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.451-460
    • /
    • 2006
  • We have designed local exposure systems for long-time mice experiments in PCS and cellular frequency band(PCS: 1,762.5 MHz, cellular: 848.5 MHz). The fabricated systems are local exposure systems of carousel type, and 40 mice can be exposed at a time. In order not to give extra stress to the mice ender experiment, the systems were fabricated to meet the environmental conditions such as illumination, ventilation, noise etc. SAR measurement was performed using a temperature probe. Measurements at 3 points in the head of mouse cadaver and solid phantom were made, and it has been confirmed that the measurement results are in good agreement with the simulation results in the real exposure environment. The exposure systems are currently used for long-term mice experiments.

Long Short-Term Memory Neural Network assisted Peak to Average Power Ratio Reduction for Underwater Acoustic Orthogonal Frequency Division Multiplexing Communication

  • Waleed, Raza;Xuefei, Ma;Houbing, Song;Amir, Ali;Habib, Zubairi;Kamal, Acharya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.239-260
    • /
    • 2023
  • The underwater acoustic wireless communication networks are generally formed by the different autonomous underwater acoustic vehicles, and transceivers interconnected to the bottom of the ocean with battery deployed modems. Orthogonal frequency division multiplexing (OFDM) has become the most popular modulation technique in underwater acoustic communication due to its high data transmission and robustness over other symmetrical modulation techniques. To maintain the operability of underwater acoustic communication networks, the power consumption of battery-operated transceivers becomes a vital necessity to be minimized. The OFDM technology has a major lack of peak to average power ratio (PAPR) which results in the consumption of more power, creating non-linear distortion and increasing the bit error rate (BER). To overcome this situation, we have contributed our symmetry research into three dimensions. Firstly, we propose a machine learning-based underwater acoustic communication system through long short-term memory neural network (LSTM-NN). Secondly, the proposed LSTM-NN reduces the PAPR and makes the system reliable and efficient, which turns into a better performance of BER. Finally, the simulation and water tank experimental data results are executed which proves that the LSTM-NN is the best solution for mitigating the PAPR with non-linear distortion and complexity in the overall communication system.

A numerical model for the long-term service analysis of steel-concrete composite beams regarding construction stages: Case study

  • Marcela P. Miranda;Jorge L. P. Tamayo;Inacio B. Morsch
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.199-215
    • /
    • 2024
  • The Caynarachi Bridge is a 130 m long posttensioned steel-concrete composite bridge built in Peru. The structural performance of this bridge under construction loads is reviewed in this paper using numerical simulation. Hence, a numerical model using shell finite elements to trace its deformational behavior at service conditions is proposed. The geometry and boundary conditions of the superstructure are updated according to the construction schedule. Firstly, the adequacy of the proposed model is validated with the field measurements obtained from the static truck load test. Secondly, the study of other scenarios less explored in research are performed to investigate the effect of some variables on bridge performance such as time effects, sequence of execution of concrete slabs and type of supports conditions at the abutments. The obtained results show that the original sequence of execution of the superstructure better behaves mechanically in relation to the other studied scenarios, yielding smaller stresses at critical cross sections with staging. It is also demonstrated that an improper slab staging may lead to more critical stresses at the studied cross sections and that casting the concrete slab at the negative moment regions first can lead to an optimal design. Also, the long-term displacements can be accurately predicted using an equivalent composite resistance cross section defined by a steel to concrete modulus ratio equal to three. This article gives some insights into the potential shortcomings or advantages of the original design through high-fidelity finite element simulations and reinforces the understating of posttensioned composite bridges with staging.

Thermal Performance Evaluation of a Test Cell Thru Short Term Measurements (TEST CELL에서 단기측정에 의한 열성능 평가)

  • Jeon, M.S.;Yoon, H.K.;Chun, W.G.;Jeon, H.S.
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 1990
  • Short-term tests were conducted on a house at KIER, Daejon for its thermal performance evaluation. The test procedure and data analysis were made according to the PSTAR method. Each test period was 3 days during which the building was unoccupied. The data measured with 8 channels were used to renormalize an audit based simulation model of the house. The following are the key parameters obtained in the present analysis: 1) the building loss coefficient(skin conductance plus infiltration conductance during coheating period); 2) the effective building heat capacity; and 3) the effective solar gain. An estimation of total heat required to maintain a standard level of comfort during a typical winter season is also calculated on the basis of the renormalized simulation model and typical long term weather data.

  • PDF

Simulation of Circulation and Water Qualities on a Partly Opened Estuarine Lake Through Sluice Gate (배수갑문을 통해 부분 개방된 하구호에서의 순환과 수질모의)

  • 서승원;김정훈;유시흥
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-150
    • /
    • 2002
  • To improve the water quality of the recently constructed Siwhaho, sluice gates were operated to allow free exchange of water with the sea. This estuarine lake connected to the outer sea through narrow gates is affected mainly by flushing by gate operation and river flows and wind forcing sometimes. As a predicting tool far the water qualities, a three-dimensional finite volume model CE-QUAL-ICM is incorporated into a finite element hydrodynamic model, TIDE3D. In coupling these two different modules, a new error minimization technique is applied by considering conservation of mass. Model tests for one year after calibration and validation using field observation show that eutrophication and other biological changes reach quasi-steady state after initial 60 days of simulation, thus it would be necessary to consider moderate ramp up option to remove initial uncertainties due to cold start option. Sediment-water interaction might not be a concern in the long-term simulation, since its effect is negligible. Simulated results show the newly applied scheme can be applied with satisfaction not only fur lessening of eutrophic processes in an estuarine lake but also looking for some active circulation to improve water quality.

Temperature analysis of a long-span suspension bridge based on a time-varying solar radiation model

  • Xia, Qi;Liu, Senlin;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.23-35
    • /
    • 2020
  • It is important to take into account the thermal behavior in assessing the structural condition of bridges. An effective method of studying the temperature effect of long-span bridges is numerical simulation based on the solar radiation models. This study aims to develop a time-varying solar radiation model which can consider the real-time weather changes, such as a cloud cover. A statistical analysis of the long-term monitoring data is first performed, especially on the temperature data between the south and north anchors of the bridge, to confirm that temperature difference can be used to describe real-time weather changes. Second, a defect in the traditional solar radiation model is detected in the temperature field simulation, whereby the value of the turbidity coefficient tu is subjective and cannot be used to describe the weather changes in real-time. Therefore, a new solar radiation model with modified turbidity coefficient γ is first established on the temperature difference between the south and north anchors. Third, the temperature data of several days are selected for model validation, with the results showing that the simulated temperature distribution is in good agreement with the measured temperature, while the calculated results by the traditional model had minor errors because the turbidity coefficient tu is uncertainty. In addition, the vertical and transverse temperature gradient of a typical cross-section and the temperature distribution of the tower are also studied.

Numerical Simulation on Seepage and Seismic Behaviors of Poorly-Compacted Raised Reservoir Levee (다짐시공이 불량한 증고 저수지 제체의 침투 및 동적거동 해석)

  • Lee, Chung-Won;Park, Sung-Yong;Oh, Hyeon-Mun;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.85-99
    • /
    • 2015
  • It is urgent to redevelop the superannuated reservoir levee through the levee raising for countermeasure to climate change and improvement of storage capacity of reservoir. However, low compaction degree of the raised reservoir levee owing to poor construction condition leads to degradation of the stability of the reservoir levee on seepage and earthquake. In this study, seepage and seismic behavior of raised reservoir levee with low compaction degree was evaluated through numerical simulation. From the simulated results, water level raising possibly induces crack and/or sinkhole on the surface of the poorly-compacted raised reservoir levee owing to the increase of the subsidences at the crown and the front side of that. In addition, relatively larger displacement and acceleration response at the front side of raised reservoir levee in seismic condition may degrade overall stability of reservoir levee. Therefore, reasonable construction management for the compaction of the raised reservoir levee is required for ensuring long-term stability on seepage and earthquake.

Predictability of the Seasonal Simulation by the METRI 3-month Prediction System (기상연구소 3개월 예측시스템의 예측성 평가)

  • Byun, Young-Hwa;Song, Jee-Hye;Park, Suhee;Lim, Han-Chul
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.27-44
    • /
    • 2007
  • The purpose of this study is to investigate predictability of the seasonal simulation by the METRI (Meteorological Research Institute) AGCM (Atmospheric General Circulation Model), which is a long-term prediction model for the METRI 3-month prediction system. We examine the performance skill of climate simulation and predictability by the analysis of variance of the METRI AGCM, focusing on the precipitation, 850 hPa temperature, and 500 hPa geopotential height. According to the result, the METRI AGCM shows systematic errors with seasonal march, and represents large errors over the equatorial region, compared to the observation. Also, the response of the METRI AGCM by the variation of the sea surface temperature is obvious for the wintertime and springtime. However, the METRI AGCM does not show the significant ENSO-related signal in autumn. In case of prediction over the east Asian region, errors between the prediction results and the observation are not quite large with the lead-time. However, in the predictability assessment using the analysis of variance method, longer lead-time makes the prediction better, and the predictability becomes better in the springtime.