• Title/Summary/Keyword: long-term simulation

Search Result 762, Processing Time 0.032 seconds

Reduction of Outage Probability due to Handover by Mitigating Inter-cell Interference in Long-Term Evolution Networks

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin Mohd;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.554-563
    • /
    • 2014
  • The burgeoning growth of real-time applications, such as interactive video and VoIP, places a heavy demand for a high data rate and guarantee of QoS from a network. This is being addressed by fourth generation networks such as Long-Term Evolution (LTE). But, the mobility of user equipment that needs to be handed over to a new evolved node base-station (eNB) while maintaining connectivity with high data rates poses a significant challenge that needs to be addressed. Handover (HO) normally takes place at cell borders, which normally suffers high interference. This inter-cell interference (ICI) can affect HO procedures, as well as reduce throughput. In this paper, soft frequency reuse (SFR) and multiple preparations (MP), so-called SFRAMP, are proposed to provide a seamless and fast handover with high throughput by keeping the ICI low. Simulation results using LTE-Sim show that the outage probability and delay are reduced by 24.4% and 11.9%, respectively, over the hard handover method - quite a significant result.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.

Finite element analysis of long-term changes of the breast after augmentation mammoplasty: Implications for implant design

  • Myung, Yujin;Lee, Jong-Gu;Cho, Maenghyo;Heo, Chan Yeong
    • Archives of Plastic Surgery
    • /
    • v.46 no.4
    • /
    • pp.386-389
    • /
    • 2019
  • The development of breast implant technology continues to evolve over time, but changes in breast shape after implantation have not been fully elucidated. Thus, we performed computerized finite element analysis in order to better understand the trajectory of changes and stress variation after breast implantation. The finite element analysis of changes in breast shape involved two components: a static analysis of the position where the implant is inserted, and a dynamic analysis of the downward pressure applied in the direction of gravity during physical activity. Through this finite element analysis, in terms of extrinsic changes, it was found that the dimensions of the breast implant and the position of the top-point did not directly correspond to the trajectory of changes in the breast after implantation. In addition, in terms of internal changes, static and dynamic analysis showed that implants with a lower top-point led to an increased amount of stress applied to the lower thorax. The maximum stress values were 1.6 to 2 times larger in the dynamic analysis than in the static analysis. This finding has important implications for plastic surgeons who are concerned with long-term changes or side effects, such as bottoming-out, after anatomic implant placement.

RSA - QoS: A Resource Loss Aware Scheduling Algorithm for Enhancing the Quality of Service in Mobile Networks

  • Ramkumar, Krishnamoorthy;Newton, Pitchai Calduwel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5917-5935
    • /
    • 2018
  • Adaptive Multi-Rate Codec is one of the codecs which is used for making voice calls. It helps to connect people who are scattered in various geographical areas. It adjusts its bit-rate according to the user's channel conditions. It plays a vital role in providing an improved speech quality of voice connection in Long Term Evolution (LTE). There are some constraints which need to be addressed in providing this service profitably. Quality of Service (QoS) is the dominant mechanism which determines the quality of the speech in communication. On several occasions, number of users are trying to access the same channel simultaneously by standing in a particular region for a longer period of time. It refers to Multi-user channel sharing problem which leads to resource loss very often. The main aim of this paper is to develop a novel RSA - QoS scheduling algorithm for reducing the Resource Loss Ratio. Eventually, it increases the throughput.The simulation result shows that the RSA - QoS increases the number of users for accessing the resources better than the existing algorithms in terms of resource loss and throughput. Ultimately, it enhances the QoS in Mobile Networks.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

A data fusion method for bridge displacement reconstruction based on LSTM networks

  • Duan, Da-You;Wang, Zuo-Cai;Sun, Xiao-Tong;Xin, Yu
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.599-616
    • /
    • 2022
  • Bridge displacement contains vital information for bridge condition and performance. Due to the limits of direct displacement measurement methods, the indirect displacement reconstruction methods based on the strain or acceleration data are also developed in engineering applications. There are still some deficiencies of the displacement reconstruction methods based on strain or acceleration in practice. This paper proposed a novel method based on long short-term memory (LSTM) networks to reconstruct the bridge dynamic displacements with the strain and acceleration data source. The LSTM networks with three hidden layers are utilized to map the relationships between the measured responses and the bridge displacement. To achieve the data fusion, the input strain and acceleration data need to be preprocessed by normalization and then the corresponding dynamic displacement responses can be reconstructed by the LSTM networks. In the numerical simulation, the errors of the displacement reconstruction are below 9% for different load cases, and the proposed method is robust when the input strain and acceleration data contains additive noise. The hyper-parameter effect is analyzed and the displacement reconstruction accuracies of different machine learning methods are compared. For experimental verification, the errors are below 6% for the simply supported beam and continuous beam cases. Both the numerical and experimental results indicate that the proposed data fusion method can accurately reconstruct the displacement.

Numerical analysis of the venturi flowmeter in the liquid lead-bismuth eutectic circuit after long-term operation

  • Zhichao Zhang;Rafael Macian-Juan;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1081-1090
    • /
    • 2024
  • The liquid Lead-bismuth eutectic is used as the coolant for Gen-IV reactor concepts. However, due to its strong corrosive and high operating temperature, it is difficult to accurately measure the flow rate in long-term operating conditions. Venturi flowmeter is a simple structured flowmeter, which plays a very important role in the flow measurement of high-temperature liquid metals, especially since the existing flowmeters are difficult to be competent. It has the advantages of easy maintenance and stable operation. Therefore, it is necessary to study the operating conditions of the venturi flowmeter under high-temperature conditions. This work performs a series of simulations of the fluid-solid interaction between the flow liquid metal and venturi flowmeter with COMSOL software, including the dimensional sensitivity analysis of the venturi flowmeter to explore the most suitable structure and parameters for liquid heavy metal, the sensitivity analysis of the geometric parameters of the venturi tube on the varying conditions. It shows that when the contraction angle of the venturi flowmeter is 33°, the diffusion angle is 13°, the diameter of the throat is 8 mm, and the temperature of the lead-bismuth eutectic is 733.15 K, it is most suitable for the measurement in the lead-bismuth circuit.

Approach to Simulation of Long- and Short-Term Maintenance Planning in Floating Offshore Wind Farms (부유식 해상풍력단지의 장/단기 정비계획 시뮬레이션)

  • Nam-Kyoung Lee;Song-Kang An;Young-Jin Oh
    • Journal of Wind Energy
    • /
    • v.13 no.2
    • /
    • pp.5-12
    • /
    • 2022
  • Operations and maintenance (O&M) in offshore wind farms accounts for a substantial portion of the life cycle cost due to harsh weather conditions and vessel dispatching. In this regard, it is crucial to expedite O&M technologies in South Korea, which is in the early stage of harnessing wind resources from the ocean. This contribution investigates an O&M planning and scheduling model for floating offshore wind farms with a literature review and use case study. We introduce the development of a long- and short-term maintenance planning framework as part of an integrated O&M platform. This contains a single vessel and fleets routing composition along with technicians and a maintenance job list based on numerical algorithms. Additionally, the routing search presents the basis of decision support for economic trade-offs regarding smooth operation corresponding to ever-changing wind farm situations. The maintenance planning simulator will ultimately contribute to support yearly and day-to-day power-related decisions in a cost-effective manner.

The Multisector Model of the Korean Economy: Structure and Coefficients (한국경제(韓國經濟)의 다부문모형(多部門模型) : 모형구조(模型構造)와 추정결과(推定結果))

  • Park, Jun-kyung;Kim, Jung-ho
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.3-20
    • /
    • 1990
  • The multisector model is designed to analyze and forecast structural change in industrial output, employment, capital and relative price as well as macroeconomic change in aggregate income, interest rate, etc. This model has 25 industrial sectors, containing about 1,300 equations. Therefore, this model is characterized by detailed structural disaggregation at the sectoral level. Individual industries are based on many of the economic relationships in the model. This is what distinguishes a multisector model from a macroeconomic model. Each industry is a behavioral agent in the model for industrial investment, employment, prices, wages, and intermediate demand. The strength of the model lies in the simulating the interactions between different industries. The result of its simulation will be introduced in the next paper. In this paper, we only introduce the structure of the multisector model and the coefficients of the equations. The multisector model is a dynamic model-that is, it solves year by year into the future using its own solutions for earlier years. The development of a dynamic, year-by-year solution allows us to combine the change in structure with a consideration of the dynamic adjustment required. These dynamics have obvious advantages in the use of the multisector model for industrial planning. The multisector model is a medium-term and long-term model. Whereas a short-term model can taken the labor supply and capital stock as given, a long-term model must acknowledge that these are determined endogenously. Changes in the medium-term can be analyzed in the context of long-term structural changes. The structure of this model can be summarized as follow. The difference in domestic and world prices affects industrial structure and the pattern of international trade; domestic output and factor price affect factor demand; factor demand and factor price affect industrial income; industrial income and relative price affect industrial consumption. Technical progress, as measured in terms of total factor productivity and relative price affect input-output coefficients; input-output coefficients and relative price determine the industrial input cost; input cost and import price determine domestic price. The differences in productivity and wage growth among different industries affect the relative price.

  • PDF

A Study on the Strategy for Optimizing Investment Portfolios (최적 투자 포트폴리오 구성전략에 관한 연구)

  • Gu, Seung-Hwan;Jang, Seong-Yong
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.300-310
    • /
    • 2010
  • This paper is about an optimal investment portfolio strategy. Financial data of stocks, bonds, and savings from January 2. 2001 through October 30. 2009 were utilized in order to suggest the optimal portfolio strategies. Fundamental analysis and technical analysis were used in stocks-related strategy, whereas passive investment strategy and active investment strategy were used in bond-related strategy. The score is assigned to each stock index according to the suggested strategies and set trading rules are based on the scores. The simulation has been executed about each 29,400-portfolios and we figured out with the simulation result that 26.75% of 7,864 portfolios are more profitable than average stock market profit (22.6%, Annualized). The outcome of this research is summarized in two parts. First, it's the rebalancing strategy of portfolio. The result shows that value-oriented investment(long-term investment) strategy yields much higher than short-term investment strategies of stocks or active investment of bonds. Second, it's about the rebalancing cycle forming the portfolios. The result shows that the rate of return for the portfolio is the best when rebalancing cycle is 12 or 18 months.