• Title/Summary/Keyword: long-term simulation

Search Result 762, Processing Time 0.023 seconds

A Study on the Proper Size of Rainwater Stored Tank in Submerged Districts Using SWMM Program (SWMM을 활용한 침수예상지역 우수저류조의 적정크기결정에 관한 연구)

  • Jang, Seung-Jae
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.69-76
    • /
    • 2009
  • The Storm Water Management Model(SWMM) by EPA is a dynamic rainwater-runoff simulation model used for single event or long-term simulation of runoff quantity and quality from primarily urban areas. The SWMM simulation program is operated by the site area, the weather date, conduit plan etc. on reference region. The purpose of this study was to analyze flood area, the duration of flooded and surcharged on the reference region. Without rainwater stored tank, the area of flooded and surcharged on reference area is similar to the area of reference region. But, With rainwater stored tank, the area of flooded and surcharged on reference area is much reduced compared to without rainwater stored tank. According to SWMM simulation results, the rainwater stored tank is located closer to site is more effective for reduction of duration of flooded and surcharged and flow rate.

Simulation Models for Container Terminal Planning (컨테이너 터미널 중장기계획 수립을 위한 시뮬레이션 모형 개발 -안벽과 장치장 중심-)

  • 남기찬;곽규석;신재영;김우선
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.159-171
    • /
    • 1999
  • This Paper aims to develop container terminal simulation models for medium and long term decision makings. It first undertakes in-depth survey of literature. finds its shortcomings and suggests some directions for improvement. It then proposes detailed design for the simulation models. Based on this it finally developes several simulation models and applies them to a hypothetical situation of a container terminal development. The results reveal that basic design questions such as length of quay, number of quay crane, size of storage area are well produced through the models.

  • PDF

Analysis of Thermal Performance of a Solar Heating & Cooling System (태양열 냉.난방시스템의 열성능 분석)

  • Kwak, Hee-Youl;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.43-49
    • /
    • 2008
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of a solar heating & cooling system by means of the $200m^2$ evacuated tube solar collector. The simulation was carried out using the thermal simulation code TRNSYS with new model of a single-effect LiBr/$H_{2}O$ absorption chiller developed by this study. The calculation was performed for yearly long-term thermal performance and for two design factors: the solar hot water storage tank and the cold water storage tank. As a result, it was anticipated that the yearly mean system efficiency is 46.7% and the solar fraction for the heating, cooling and hot water supply are about 84.4 %, 41.7% and 72.4%, respectively.

An Artificial Recharge Test and Its Numerical Simulation for the Analysis of Seepage in the Songsanri Tomb Site of Kongju (공주 송산리고분군 누수현상 원인 분석을 위한 인공함양시험 및 수치모델링)

  • 구민호;서만철
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • An artificial recharge test was performed to analyze the source of seepage observed inside the Songsanri tombs Kongju during the rainy season. In order to simulate simulate the test, a two-dimensional unsaturated groundwater flow model was developed. By the measured water level variation in the observation wells and in the artificail water tank, the model was cailbrated to estimate the model parameters such as fitting parameters in the constitutive relations(n and $\alpha$), the saturated volumetric water content, the residual volumetric water content, and the saturated hydraulic conductivity. Using the calibrated parameters, the recharge test was simulated. The results of the test and simulation show that the major source of the seepage is the downward groundwater flow through cracks in the protection layer the tombs. It was also analyzed by the steady state simulation that, with a perfect protection layer, a long-term precipitation that, with a perfect protection layer, a long-term precitation could cause only 10% increase of the effective saturation around the north side of the Muryong royal tomb by infiltration of the unsaturated groundwater from the North. Therefore, it is concluded that the most urgent protection plan for the tombs with respect to seepage is to reconstruct an effective waterproof-layer rather than a trenched drainage system.

  • PDF

Development and Use of Digital Climate Models in Northern Gyunggi Province - II. Site-specific Performance Evaluation of Soybean Cultivars by DCM-based Growth Simulation (경기북부지역 정밀 수치기후도 제작 및 활용 - II. 콩 생육모형 결합에 의한 재배적지 탐색)

  • 김성기;박중수;이영수;서희철;김광수;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • A long-term growth simulation was performed at 99 land units in Yeoncheon county to test the potential adaptability of each land unit for growing soybean cultivars. The land units for soybean cultivation(CZU), each represented by a geographically referenced land patch, were selected based on land use, soil characteristics, and minimum arable land area. Monthly climatic normals for daily maximum and minimum temperature, precipitation, number of rain days and solar radiation were extracted for each CZU from digital climate models(DCM). The DCM grid cells falling within a same CZU were aggregated to make spatially explicit climatic normals relevant to the CZU. A daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CROPGRO-soybean model suitable for 2 domestic soybean cultivars were derived from long-term field observations. Three foreign cultivars with well established parameters were also added to this study, representing maturity groups 3, 4, and 5. Each treatment was simulated with the randomly generated 30 years' daily weather data(from planting to physiological maturity) for 99 land units in Yeoncheon to simulate the growth and yield responses to the inter-annual climate variation. The same model was run with input data from the Crop Experiment Station in Suwon to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for evaluation. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific cultivar. A computer program(MAPSOY) was written to help utilize the results in a decision-making procedure for agrotechnology transfer. transfer.

Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System (지역난방 적용 태양열시스템의 장기 열성능 분석)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

Development of Femtocell Simulator Based on LTE Systems for Interference and Performance Evaluation (간섭 및 성능 분석을 위한 LTE 시스템 기반 펨토셀 시뮬레이터 개발)

  • Kim, Chang-Seup;Choi, Bum-Gon;Koo, Bon-Tae;Lee, Mi-Young;Chung, Min-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2011
  • Recently, femtocell has been concerned as one of effective solutions to relieve shadow region and provide high quality services to users in indoor environments. Even though femtocell offers various benefits to cellular operators and users, many technical issues, such as interference coordination, network synchronization, self-configuration, self-optimization, and so on, should be solved to deploy the femtocell in current network. In this paper, we develop a simulator for evaluating performance of long term evolution (LTE) femtocell systems under various interference scenarios. The simulator consists of a main-module and five sub-modules. The main-module connects and manages five sub-modules which have the functionality managing user mobility, packet scheduling, call admission control, traffic generation, and modulation and coding scheme (MCS). To provide user convenience, the simulator adopts graphical user interface (GUI) which can observes simulation results in real time. We expect that this simulator can contribute to developing effective femtocell systems by supporting a tool for analyzing the effect of interference between macrocell and femtocell.

FFT-based Channel Estimation Scheme in LTE-A Downlink System (LTE-A 하향링크 시스템을 위한 새로운 FFT 기반 채널 추정 기법)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, we propose the channel estimation scheme for Long Term Evolution-Advanced (LTE-A) downlink system. The proposed scheme uses the fast fourier transform (FFT) interpolation scheme for the user moving at a high speed. The FFT interpolation scheme converts the channel frequency response obtained from least square (LS) or minimum mean square error (MMSE) channel estimation scheme to time domain channel impulse response by taking the inverse FFT (IFFT). After windowing the channel response in the time domain, we can obtain the channel frequency response by taking the FFT. We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-A downlink system. Simulation results show that the proposed channel estimation scheme can improve signal-to-noise-plus-interference ratio (SINR), throughput, and spectral efficiency of conventional system.

Analysis of Long-Term Wave Distribution at Jeju Sea Based on SWAN Model Simulation (SWAN모델을 이용한 제주해역 장기 파랑분포 특성 연구)

  • Ryu Hwangjin;Hong Keyyong;Shin Seung-Ho;Song Museok;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.137-145
    • /
    • 2004
  • Long-term wave distribution at Jeju sea is investigated by a numerical simulation based on the thirdgeneration wave model SWAN (Simulating WAves Nearshore). The Jeju sea which retains relatively high wave energy density among Korean coastal regions is considered to be a suitable site for wave power generation and the efficiency of wave power generation is closely related to local wave characteristics. The monthly mean of a large-scale long-term wave data from 1979 to 2002, which is provided by Korea Ocean Research & Development Institute. is used as the boundary condition of SWAN model simulation with 1km grid. An analysis of wave distribution concentrates on the seasonal variation and spatial distribution of significant wave heights, mean wave directions and mean wave periods. Significant wave heights are higher in winter and summer and the west sea of Jeju appears relatively higher than east's. The highest significant wave height occurs at the northeast sea in winter and the second highest significant wave height appears at the southeast sea in summer, while the significant wave heights in spring and autumn are relatively low but homogeneous. The distribution of wave directions reveals that except the rear region influenced by wave refraction, the northwest wave direction is dominant in summer and the southeast in winter. Wave periods are longer in summer and winter and the west sea of Jeju appears relatively longer than east's. The longest wave period occurs at the west sea in winter, and in summer it appears relatively homogeneous with a little longer period at the south sea.

  • PDF

Set up Reduction Goals of Combined Sewer Overflow Pollutant Load Using Long-Term Rainfall-Runoff Model Simulation (장기간 강우-유출 모의를 통한 합류식하수관로시스템의 월류부하량 저감목표 설정 연구)

  • Lee, Gunyoung;Na, Yongun;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.785-794
    • /
    • 2013
  • Combined sewer overflows during rainfall events contain sewer sediments and surface pollutants. This can cause significant chemical, physical and biological problems to receiving watershed. However, there are no method that can commonly apply to decide criteria for controlling the pollutant load. In this study, it sets up the reduction goals of combined sewer overflow through long-term simulation using the rainfall-runoff model. From a review of domestic and foreign management standard of combined sewer overflow for this, it makes decision that 60% (phase 1), 85% (phase 2) of total pollutant load and frequency per year for reduction goals is more proper. Also, the result of analyzing long-term simulation (minimum 10 years) applied to research basin indicates that reduction goals of BOD pollutant load are 1,123 kg (phase 1) and 2,374 kg (phase 2), and overflow volumes for research objective achievement are $11,685m^3$ (phase 1) and $24,701m^3$ (phase 2).