• 제목/요약/키워드: long-term operation test

검색결과 173건 처리시간 0.031초

Performance evaluation of TEDA impregnated activated carbon under long term operation simulated NPP operating condition

  • Lee, Hyun Chul;Lee, Doo Yong;Kim, Hak Soo;Kim, Cho Rong
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2652-2659
    • /
    • 2020
  • The methyl iodide (CH3I) removal performance of tri-ethylene-di-amine impregnated activated carbon (TEDA-AC) used in the air cleaning unit of nuclear power plants (NPPs) should be maintained at least 99% between 24 month-performance test period. In order for evaluating the effectiveness of TEDA-AC on the removal performance of CH3I in nuclear power plant during the operation of NPPs, the long-term test for up to 15 months was carried out under the simulated operating conditions (e.g., 25 ℃, RH 50%, ppb level poisoning gases injection) at nuclear power plants (NPPs). The TEDA-AC samples were analyzed with the Brunauer-Emmett-Teller (BET) specific surface area and TEDA content as well as CH3I penetration test. It is clearly evident that more than 99% of CH3I removal performance of TEDA-AC was observed in the TEDA-AC samples during 15 months of long-term operation under the simulated NPP operating conditions including the ppb level of organic and oxide form of poisoning gases. BET specific surface area and TEDA content that can affect the CH3I removal performance of TEDA-AC were also maintained as those in new TEDA-AC during 15 months of long-term operation.

초고압 지중케이블 장기신뢰성 실증시험장 구축 (Test-Field Construction for Long-term Reliability of EHV Underground Transmission Cable)

  • 김진;강지원;장태인;양병모;박준우;박흥석;윤형희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.383_384
    • /
    • 2009
  • After the 1970s, the importance of underground transmission systems increased and the construction rate of underground transmission lines also showed increasing trends each year, especially in metropolitan areas. Accordingly the social ripple effects are very large and wide when the fault occurs in underground power system, and the amount of time and money spent to restore the system also increases. So we must ensure stable operation and long-term reliability of the facilities. In Korea's case, long-term reliability tests for EHV power cables and accessories progressed poorly because equipment was not compatible for long-term reliability tests. Therefore we planned to construct a long-term reliability test field for EHV underground cables in order to ensure international quality reliability and optimal power cable operation techniques. The Gochang Underground Cable Test Field is under construction, funded by the Korean government, the govenment's union investment department, KEPCO, KERI and three private cable corporations. This project began in March, 2005 and will be completed by February, 2010. It is designed to promote joint research by incorporating several types of test equipment, construction of operating facilities, and being an internationally certified authority.

  • PDF

태양광발전시스템의 장기운전에 의한 성능변화 분석 (Performance Analysis of long term operation for photovoltaic system)

  • 김의환;김정삼
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.110.1-110.1
    • /
    • 2011
  • This study analyzed the performance of long term operation photovoltaic system The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 12 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 38.0 MWh in 2010. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 8.8% in 2011. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 12 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

  • PDF

태양열 시설원예 난방시스템 장기실증 성능분석 연구 (Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy)

  • 이상남;강용혁;유창균;김진수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

태양열 시설원예 난방시스템 장기실증 성능분석 연구 (Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy)

  • 이상남;강용혁;유창균;김진수
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

정밀여과를 이용한 역삼투법 해수담수화 전처리 공정의 장기운전 특성 (Long Term Operation of Microfiltration as a Pretreatment for Seawater Reverse Osmosis Processes)

  • 김수한;김충환;강석형;임재림
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.735-741
    • /
    • 2010
  • A pilot test was carried out to investigate the long term operation characteristics of Microfiltration (MF) system as a pretreatment for seawater reverse osmosis (SWRO) processes for two years. A commercialized MF module with pressurized operation type was used to filter seawater to remove particles which can foul reverse osmosis (RO) membrane. Silt Density Index (SDI) values of filtered seawater by the MF system were ranged from 0.14 to 1.79, which meet the SDI standard for RO feed water as depicted in previous literatures. Although the tested seawater is quite clean (i.e., dissolved organic cabon (DOC) concentration and turbidity were about 1 mg/l and less than 1 NTU, respectively) enough not to foul the MF membrane, steep increase in trans-membrane pressure (TMP) with a constant flux were observed over a whole operation period. A set of operation and water analysis data implies that the steep increase in TMP was resulted from iron and maganese fouling by the combination of metal corrosion by seawater and oxidation state by aeration and residual chlorine.

스테인리스 스틸-나트륨 히트파이프의 장기 수명 시험 (Long-Term Life Test of A Stainless Steel-Sodium Heat Pipe)

  • 박수용;정의국;부준홍;강환국;유정현;박상훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1058-1062
    • /
    • 2004
  • High-temperature cylindrical stainless steel/sodium heat pipe was manufactured and tested under long-term operation. The container material was stainless steel 316L and the working fluid was sodium. The heat pipe was 25.4 mm in diameter and 1000 mm in length with a two-layer screen mesh wick. The evaporator part was 600 mm and the condenser part was 300 mm in length. Total measurement points on heat pipe were 15 points and 12 points were located in condenser part. The heat pipe was heated for 142 days(3400 hours) at $800^{\circ}C$. In the test period, the maximum temperature difference was increased from $18^{\circ}C$ o $28^{\circ}C$ and the maximum thermal resistance was as low as $0.015^{\circ}CW$.

  • PDF

Monitoring and Analysis of 3kW Grid-Connected PV System for Performance Evaluation

  • So Jung-Hun;Jung Young-Seok;Yu Gwon-Jong;Choi Ju-Yeop;Choi Jae-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.57-62
    • /
    • 2005
  • Grid-connected photovoltaic (PV) systems were installed and monitored at the field demonstration test center (FDTC) in Korea in October 2002. Before long-term field testing of installed PV systems, the performances of PV components were evaluated and compared through short-term performance tests of each of the PV system components such as power conditioning system and PV module under standard test conditions. A data acquisition system has been constructed for measuring and analyzing the performance of PV systems to observe the overall effect of environmental conditions on their operation characteristics. Performances of PV systems have been evaluated and analyzed not only for component perspective (PV array, power conditioning unit) but also for global perspective (system efficiency, capacity factor, electrical power energy) by review of the field test and loss factors of the systems. These results indicate that it is highly imperative to develop an optimum design technology of grid connected PV systems. The objective of this paper is not only to evaluate and analyze the performance of domestic PV systems application through long-term field testing at FDTC but also to develop evaluation, analysis and optimum technology for long-term stability and reliability of grid-connected PV systems in Korea.

OPTIMUM STORAGE REALLOCATION AND GATE OPERATION IN MULTIPURPOSE RESERVOIRS

  • Hamid Moradkhani
    • Water Engineering Research
    • /
    • 제3권1호
    • /
    • pp.57-62
    • /
    • 2002
  • This research is intended to integrate long-term operation rules and real time operation policy for conservation & flood control in a reservoir. The familiar Yield model has been modified and used to provide long-term rule curves. The model employs linear programming technique under given physical conditions, i.e., total capacity, dead storage, spillways, outlet capacity and their respective elevations to find required and desired minimum storage fur different demands. To investigate the system behavior resulting from the above-mentioned operating policy, i.e., the rule curves, the simulation model was used. Results of the simulation model show that the results of the optimization model are indeed valid. After confirmation of the above mentioned rule curves by the simulation models, gate operation procedure was merged with the long term operation rules to determine the optimum reservoir operating policy. In the gate operation procedure, operating policy in downstream flood plain, i.e., determination of damaging and non-damaging discharges in flood plain, peak floods, which could be routed by reservoir, are determined. Also outflow hydrograph and variations of water surface levels for two known hydrographs are determined. To examine efficiency of the above-mentioned models and their ability in determining the optimum operation policy, Esteghlal reservoir in Iran was analyzed as a case study. A numerical model fur the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

중규모 태양광발전시스템 장기 실증운전 평가 (The long-term operating evaluation of the grid connected photovoltaic system)

  • 김의환;안교상;임희천
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.14-19
    • /
    • 2009
  • The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 10 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 41.9 MWh in 2008. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 9.6% in 2008. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 10 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.