• 제목/요약/키워드: long-term forecasts

검색결과 97건 처리시간 0.031초

장기 기후 변동성을 고려한 인공신경망 앙상블 모형 적용: 한강 유역 댐 유입량 예측을 중심으로 (Application of Artificial Neural Network Ensemble Model Considering Long-term Climate Variability: Case Study of Dam Inflow Forecasting in Han-River Basin)

  • 김태림;주경원;조완희;허준행
    • 한국습지학회지
    • /
    • 제21권spc호
    • /
    • pp.61-68
    • /
    • 2019
  • 최근 장기적인 기후 변동성을 고려하기 위하여 대기-해양 순환 패턴을 수치화한 기상인자가 수문 변수 예측에 널리 사용되고 있다. 또한 정확하고 안정적인 예측을 위해 인공신경망 기반의 예측 모형이 꾸준히 발전하고 있다. 기상인자를 활용하여 기후 변동성을 고려한 수문량 예측은 수자원 및 환경 보존의 장기적인 관리에 효율적으로 활용될 수 있으므로 수문 변수에 유의한 인자의 파악과 이를 활용한 예측 모형의 적용은 꾸준한 도전이 될 것이다. 본 연구에서는 우리나라 한강 유역 댐 유입량에 통계적으로 유의한 상관성이 있는 대표 기상인자를 선정하고, 이를 인공신경망 앙상블 모형에 적용하여 댐 유입량 예측을 수행하였다. 이를 위해 앙상블 경험적 모드분해법을 활용하여 댐 유입량과 기상인자간의 통계적 상관성을 확인하였으며, 기존 단일 인공신경망 모형의 한계를 보완한 인공신경망 앙상블 모형을 구축하였다. 예측 수행 결과, 5개 댐 상관계수 평균이 훈련 기간에서 0.88, 검증 기간에서 0.68의 예측력을 보이는 것을 확인하였으며, 본 연구에서의 절차를 토대로 우리나라의 다양한 수문 변수와 기후 변동성간의 관계를 활용한 다양한 적용 사례가 나오길 기대한다.

부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석 (Forecasting Korean housing price index: application of the independent component analysis)

  • 박노진
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.271-280
    • /
    • 2017
  • 우리나라 뉴스에서 매일 빠지지 않는 내용은 아마도 부동산 경제에 관한 것이라고 생각된다. 많은 사람들은 부동산 가격의 변동에 관한 전문가들의 예측에 관심을 갖고 있다. 매매가격 혹은 전세가격을 예측하기위해 일반적으로 많이 사용되는 방법은 박스-젠킨스에 기반을 둔 자기회귀이동평균모형이다. 본 논문에서는 자기회귀모형과 다변량 자료분석에서 사용하는 독립성분분석을 결합하여 예측하는 방법을 시도하여 보았다. 매매가격과 전세가격을 두 개의 독립성분으로 재설정하고 독립성분들을 이용하여 예측한 후 역변환을 통해 매매가격과 전세가격을 예측하는 방법을 시도하였다. 그 결과 일반적인 자기회귀이동평균모형을 사용할 때 보다 독립성분을 활용한 예측이 실제 지수에 더 유사한 값들을 얻을 수 있음을 보였다.

모수 절약 주기적 자기회귀 모형에 관한 연구 (A study on parsimonious periodic autoregressive model)

  • 이지호;성병찬
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.133-144
    • /
    • 2016
  • 본 논문에서는 주기적 자기회귀(periodic autoregressive) 모형에서 모수의 수를 줄이기 위한 모수 절약 주기적 자기회귀 모형을 연구하였다. 제안된 모수 절약 모형은 실증분석에서 실업률을 이용하여 기존의 계절 시계열 모형과 비교를 통하여 그 성능을 평가하였다. 모수 절약 구조를 부여하기 위하여 계절성에서 공통된 패턴을 찾아내는 방법을 사용하였으며 기존 주기적 자기회귀 모형과의 통계적 차이 유무는 LR 검정을 통해 확인하였다. 그 결과, 중장기적으로 주기적 자기회귀 모형이 기존의 계절시계열 모형보다 우수한 예측성능을 보였으며, 특히 모수 절약 주기적 자기 회귀 모형의 사용은 기존의 주기적 자기회귀 모형보다 우수한 예측성능을 나타내는 것을 확인하였다.

기상예보를 고려한 관개용 저수지의 최적 조작 모형(I) -일강수량.일증발량 자료발생- (Optimal Reservoir Operation Models for Paddy Rice Irrigation with Weather Forecasts (I) - Generating Daily Rainfall and Evaporation Data-)

  • 김병진;박승우
    • 한국농공학회지
    • /
    • 제36권1호
    • /
    • pp.63-72
    • /
    • 1994
  • The objective of the study is to develop weather generators for daily rainfall and small pan evaporation and to test the applicability with recorded data. Daily rainfall forecasting model(DRFM) was developed that uses a first order Markov chain to describe rainfall seque- nces and applies an incomplete Gamma function to predict the amount of precipitation. Daily evaporation forecasting model(DEFM) that adopts a normal distribution function to generate the evaporation for dry and wet days was also formulated. DRFM and DEFM were tested with twenty year weather data from eleven stations using Chi-square and Kolmogorov and Smirnov goodness of fit tests. The test results showed that the generated sequences of rainfall occurrence, amount of rainfall, and pan evaporation were statistically fit to recorded data from eleven, seven, and seven stations at the 5% level of significance. Generated rainfall data from DRFM were very close in frequency distri- bution patterns to records for stations all over the country. Pan evaporation for rainy days generated were less accurate than that for dry days. And the proposed models may be used as tools to provide many mathematical models with long-term daily rainfall and small pan evaporation data. An example is an irrigation scheduling model, which will be further detailed in the paper.

  • PDF

[논문 철회] 노동자 건강보호를 위한 최신 유전독성학 연구전략 ([Retracted] Novel Genotoxic Strategies for Efficiently Detect Chemicals' Carcinogenicity)

  • 임경택
    • 한국환경보건학회지
    • /
    • 제44권1호
    • /
    • pp.31-43
    • /
    • 2018
  • Objectives: Effective genetic toxicology and molecular biology research techniques and strategies that are highly correlated with the carcinogenic inhalation toxicity test and related research are required. The aim of this study was to maximize the utilization of chemical substances to prevent workers' occupational diseases. Methods: We surveyed the literature, domestic and international references, and the status of relevant domestic and foreign professional organizations. Expert advisory opinions were reflected, and experts were consulted by participating in domestic and overseas academic conferences. Results: The current status of domestic and international genotoxic toxicity evaluation was examined through various documents from related organizations. Cell models for in vitro lung toxicology were investigated and summarized, and the human resources and performance results of genetic toxicity studies and pilot projects were compared and analyzed by holding an advisory meeting. We examined domestic and international genotoxicity guidelines and investigated new test methods for the development of genotoxicity and carcinogenicity. Ultimately, we described long-term future predictions, including the implementation of our researchers' recommendations and occupational genetic toxicology forecasts for future worker health protection. Conclusions: This research project aims to establish current genetic toxicology and molecular biology research techniques and strategies that can maximize the linkage with the carcinogenic inhalation toxicity test and research in the future. We expanded the study of genetic toxicity and establish a foundation forgenetic toxicity in accordance with research trends in Korea and abroad.

대류권 오존 재분석 자료의 품질 검증: 포항 오존존데와 비교 검증 (Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation)

  • 박진경;김서연;손석우
    • 대기
    • /
    • 제29권1호
    • /
    • pp.53-59
    • /
    • 2019
  • The quality of troposphere ozone in three reanalysis datasets is evaluated with longterm ozonesonde measurement at Pohang, South Korea. The Monitoring Atmospheric Composition and Climate (MACC), European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERAI) and Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA2) are particularly examined in terms of the vertical ozone structure, seasonality and long-term trend in the lower troposphere. It turns out that MACC shows the smallest biases in the ozone profile, and has realistic seasonality of lower-tropospheric ozone concentration with a maximum ozone mixing ratio in spring and early summer and minimum in winter. MERRA2 also shows reasonably small biases. However, ERAI exhibits significant biases with substantially lower ozone mixing ratio in most seasons, except in mid summer, than the observation. It even fails to reproduce the seasonal cycle of lower-tropospheric ozone concentration. This result suggests that great caution is needed when analyzing tropospheric ozone using ERAI data. It is further found that, although not statistically significant, all datasets consistently show a decreasing trend of 850-hPa ozone concentration since 2003 as in the observation.

모조 태풍 합성 재분석 바람장을 이용한 북서태평양 극치 해상풍 추정 (Estimation of Extreme Wind Speeds in the Western North Pacific Using Reanalysis Data Synthesized with Empirical Typhoon Vortex Model)

  • 김혜인;문일주
    • Ocean and Polar Research
    • /
    • 제43권1호
    • /
    • pp.1-14
    • /
    • 2021
  • In this study, extreme wind speeds in the Western North Pacific (WNP) were estimated using reanalysis wind fields synthesized with an empirical typhoon vortex model. Reanalysis wind data used is the Fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) data, which was deemed to be the most suitable for extreme value analysis in this study. The empirical typhoon vortex model used has the advantage of being able to realistically reproduce the asymmetric winds of a typhoon by using the gale/storm-forced wind radii information in the 4 quadrants of a typhoon. Using a total of 39 years of the synthesized reanalysis wind fields in the WNP, extreme value analysis is applied to the General Pareto Distribution (GPD) model based on the Peak-Over-Threshold (POT) method, which can be used effectively in case of insufficient data. The results showed that the extreme analysis using the synthesized wind data significantly improved the tendency to underestimate the extreme wind speeds compared to using only reanalysis wind data. Considering the difficulty of obtaining long-term observational wind data at sea, the result of the synthesized wind field and extreme value analysis developed in this study can be used as basic data for the design of offshore structures.

LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석 (Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model)

  • 강민상;손은국;이진재;강승진
    • 풍력에너지저널
    • /
    • 제15권2호
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

전지구 기후 재분석자료 및 인공지능을 활용한 남한의 마늘 생산량 장기예측 (Long Range Forecast of Garlic Productivity over S. Korea Based on Genetic Algorithm and Global Climate Reanalysis Data)

  • 조세라;이준리;심교문;김용석;허지나;강민구;최원준
    • 한국농림기상학회지
    • /
    • 제23권4호
    • /
    • pp.391-404
    • /
    • 2021
  • 본 연구에서는 최신의 연구 트렌드인 빅데이터와 인공지능을 농업분야에 접목하여 유전자 알고리즘(GA)과 전지구 기후 재분석 자료를 활용한 마늘 생산량의 장기 예측 모형을 개발하고 그 예측성능을 평가해 보았다. 해당 모형은 마늘의 파종량을 수정할 수 있는 11월에 예측 자료를 생산하므로, 마늘의 생산 시기와 시간공간적으로 떨어진 전지구 기후 재분석 자료로부터 마늘생산량의 예측 인자로 활용할 수 있는 시그널을 찾아 장기적 마늘 생산량 예측에 활용하였다. 그 결과 결정론적 예측과 확률론적 예측 모두 마늘 생산량의 경년변동성을 통계적으로 99% 신뢰수준에서 관측과 유사하게 모의하였으며, 범주형 예측에서도 이분위 예측에서 93.3%, 삼분위 예측에서 73.3%의 적중률을 보이며 우수한 예측 성능을 나타내었다. 또한, 예측인자들 사이의 선형 및 비선형적 관계를 모두 고려하는 GA방법을 사용하였을 때, 선형적 앙상블 방법을 적용하였을 때 보다 높은 예측성능과 안정적인 예측결과를 보이는 것을 알 수 있다. 본 연구에서 개발된 마늘 생산량 예측 모형은 기존의 단기예측 위주의 농산물 생산량 예측의 한계를 극복하고 한 해의 농사가 시작되기 전 잠재 생산량을 전망 정보를 생산하여 농산물의 수요·공급 및 가격안정화를 위한 장기적 계획을 수립하는 것에 도움이 될 것으로 생각된다.

SARIMA 모형을 이용한 우리나라 항만 컨테이너 물동량 예측 (Forecasting the Korea's Port Container Volumes With SARIMA Model)

  • 민경창;하헌구
    • 대한교통학회지
    • /
    • 제32권6호
    • /
    • pp.600-614
    • /
    • 2014
  • 본 연구는 SARIMA 모형을 활용하여 기존에 다루어지지 않았던 분기별 항만 컨테이너 물동량을 예측하였다. 구체적으로 모델 추정에 활용된 자료는 1994년 1사분기부터 2010년 4사분기까지 총 84분기동안의 국내 전체 항만 컨테이너 물동량 자료이다. 본 연구에서 추정된 예측 모형의 예측 정확도를 검증하기 위하여 2011년 1사분기부터 2013년 4사분기까지 물동량을 예측하여 실제 물동량과 비교하였다. 또한 기존에 널리 활용되고 있는 ARIMA 모형을 활용하여 추정한 예측 모형과의 비교를 통해 분기별 항만 물동량 예측에 있어서 SARIMA 모형의 상대적 우수성을 검증하였다. 기존에 항만 물동량을 예측하는 대부분의 연구는 주로 장기 예측에 초점이 맞추어져 있다. 또한 월별, 연도별 물동량 자료가 활용된 경우가 대부분이다. 분기별 항만 컨테이너 물동량 자료를 활용하여 단기 수요를 예측함과 동시에 SARIMA 모형의 우수성을 입증한 본 연구는 충분한 가치가 있다고 판단된다.