• Title/Summary/Keyword: long-term forecasts

Search Result 97, Processing Time 0.026 seconds

Informative Role of Marketing Activity in Financial Market: Evidence from Analysts' Forecast Dispersion

  • Oh, Yun Kyung
    • Asia Marketing Journal
    • /
    • v.15 no.3
    • /
    • pp.53-77
    • /
    • 2013
  • As advertising and promotions are categorized as operating expenses, managers tend to reduce marketing budget to improve their short term profitability. Gauging the value and accountability of marketing spending is therefore considered as a major research priority in marketing. To respond this call, recent studies have documented that financial market reacts positively to a firm's marketing activity or marketing related outcomes such as brand equity and customer satisfaction. However, prior studies focus on the relation of marketing variable and financial market variables. This study suggests a channel about how marketing activity increases firm valuation. Specifically, we propose that a firm's marketing activity increases the level of the firm's product market information and thereby the dispersion in financial analysts' earnings forecasts decreases. With less uncertainty about the firm's future prospect, the firm's managers and shareholders have less information asymmetry, which reduces the firm's cost of capital and thereby increases the valuation of the firm. To our knowledge, this is the first paper to examine how informational benefits can mediate the effect of marketing activity on firm value. To test whether marketing activity contributes to increase in firm value by mitigating information asymmetry, this study employs a longitudinal data which contains 12,824 firm-year observations with 2,337 distinct firms from 1981 to 2006. Firm value is measured by Tobin's Q and one-year-ahead buy-and-hold abnormal return (BHAR). Following prior literature, dispersion in analysts' earnings forecasts is used as a proxy for the information gap between management and shareholders. For model specification, to identify mediating effect, the three-step regression approach is adopted. All models are estimated using Markov chain Monte Carlo (MCMC) methods to test the statistical significance of the mediating effect. The analysis shows that marketing intensity has a significant negative relationship with dispersion in analysts' earnings forecasts. After including the mediator variable about analyst dispersion, the effect of marketing intensity on firm value drops from 1.199 (p < .01) to 1.130 (p < .01) in Tobin's Q model and the same effect drops from .192 (p < .01) to .188 (p < .01) in BHAR model. The results suggest that analysts' forecast dispersion partially accounts for the positive effect of marketing on firm valuation. Additionally, the same analysis was conducted with an alternative dependent variable (forecast accuracy) and a marketing metric (advertising intensity). The analysis supports the robustness of the main results. In sum, the results provide empirical evidence that marketing activity can increase shareholder value by mitigating problem of information asymmetry in the capital market. The findings have important implications for managers. First, managers should be cognizant of the role of marketing activity in providing information to the financial market as well as to the consumer market. Thus, managers should take into account investors' reaction when they design marketing communication messages for reducing the cost of capital. Second, this study shows a channel on how marketing creates shareholder value and highlights the accountability of marketing. In addition to the direct impact of marketing on firm value, an indirect channel by reducing information asymmetry should be considered. Potentially, marketing managers can justify their spending from the perspective of increasing long-term shareholder value.

  • PDF

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

Prediction Performance of Ocean Temperature and Salinity in Global Seasonal Forecast System Version 5 (GloSea5) on ARGO Float Data

  • Jieun Wie;Jae-Young Byon;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.327-337
    • /
    • 2024
  • The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.

Development of Demand Forecasting Algorithm in Smart Factory using Hybrid-Time Series Models (Hybrid 시계열 모델을 활용한 스마트 공장 내 수요예측 알고리즘 개발)

  • Kim, Myungsoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.187-194
    • /
    • 2019
  • Traditional demand forecasting methods are difficult to meet the needs of companies due to rapid changes in the market and the diversification of individual consumer needs. In a diversified production environment, the right demand forecast is an important factor for smooth yield management. Many of the existing predictive models commonly used in industry today are limited in function by little. The proposed model is designed to overcome these limitations, taking into account the part where each model performs better individually. In this paper, variables are extracted through Gray Relational analysis suitable for dynamic process analysis, and statistically predicted data is generated that includes characteristics of historical demand data produced through ARIMA forecasts. In combination with the LSTM model, demand forecasts can then be calculated by reflecting the many factors that affect demand forecast through an architecture that is structured to avoid the long-term dependency problems that the neural network model has.

Demand Forecast For Empty Containers Using MLP (MLP를 이용한 공컨테이너 수요예측)

  • DongYun Kim;SunHo Bang;Jiyoung Jang;KwangSup Shin
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.85-98
    • /
    • 2021
  • The pandemic of COVID-19 further promoted the imbalance in the volume of imports and exports among countries using containers, which worsened the shortage of empty containers. Since it is important to secure as many empty containers as the appropriate demand for stable and efficient port operation, measures to predict demand for empty containers using various techniques have been studied so far. However, it was based on long-term forecasts on a monthly or annual basis rather than demand forecasts that could be used directly by ports and shipping companies. In this study, a daily and weekly prediction method using an actual artificial neural network is presented. In details, the demand forecasting model has been developed using multi-layer perceptron and multiple linear regression model. In order to overcome the limitation from the lack of data, it was manipulated considering the business process between the loaded container and empty container, which the fully-loaded container is converted to the empty container. From the result of numerical experiment, it has been developed the practically applicable forecasting model, even though it could not show the perfect accuracy.

A Study on Estimations and Long-term Forecasts of SO$_2$ Pollution in Each City & County of Korea (시군별 이산화황(SO$_2$) 오염도의 현황 진단과 장기 예측에 관한 연구)

  • 김용준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.19-29
    • /
    • 1997
  • It is more likely that the degree of air quality degradation that we have faced would be much lessen, if integrated management of air pollution control and assessment had been fully enforced by the local administrations, not by the centralized environmental agency in the first place. As the selfgoverning local administrations have been established since 1995, the need for air quality control by the local administration or local agency is getting the ground. However, in practice, air quality control by the local administration rarely put into effect due to lack of basic data which cover the present trends of air quality in each local city or county and are necessary for decision making. The emissions of SO$_2$ in each city and county of Korea in 1993 were calculated in this study, based on energy consumptions and emission factors. The ambient concentrations of SO$_2$ also were estimated by applying modified Miller-Holtzworth model. Observed and estimated concentrations of SO$_2$ showed that about 17.5 percents of cities and counties in the country were more polluted than the target value, 20ppb/year. The emissions and ambient concentrations of SO$_2$ in each city and county in 2000, 2005, and 2010 were also forecasted, assumed business as usual senario. It was shown that, in 2010, the emissions of SO$_2$ will be 2.8 times more than those of 1993 and much of them are from industrial sector. Also shown that 38.3 percents of cities and counties will be more polluted than the target value and most of them are polluted areas in 1993. The methods and results of this study could be used in developing the efficient reduction strategies in each city and county.

  • PDF

Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System (전지구 계절 예측 시스템의 토양수분 초기화 방법 개선)

  • Seo, Eunkyo;Lee, Myong-In;Jeong, Jee-Hoon;Kang, Hyun-Suk;Won, Duk-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.

Modeling Planned Maintenance Outage of Generators Based on Advanced Demand Clustering Algorithms (개선된 수요 클러스터링 기법을 이용한 발전기 보수정지계획 모델링)

  • Kim, Jin-Ho;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.172-178
    • /
    • 2006
  • In this paper, an advanced demand clustering algorithm which can explore the planned maintenance outage of generators in changed electricity industry is proposed. The major contribution of this paper can be captured in the development of the long-term estimates for the generation availability considering planned maintenance outage. Two conflicting viewpoints, one of which is reliability-focused and the other is economy-focused, are incorporated in the development of estimates of maintenance outage based on the advanced demand clustering algorithm. Based on the advanced clustering algorithm, in each demand cluster, conventional effective outage of generators which conceptually capture maintenance and forced outage of generators, are newly defined in order to properly address the characteristic of the planned maintenance outage in changed electricity markets. First, initial market demand is classified into multiple demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the initial demand. Then, based on the advanced demand clustering algorithm, the planned maintenance outages and corresponding effective outages of generators are reevaluated. Finally, the conventional demand clusters are newly classified in order to reflect the improved effective outages of generation markets. We have found that the revision of the demand clusters can change the number of the initial demand clusters, which cannot be captured in the conventional demand clustering process. Therefore, it can be seen that electricity market situations, which can also be classified into several groups which show similar patterns, can be more accurately clustered. From this the fundamental characteristics of power systems can be more efficiently analyzed, for this advanced classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.

Analysis of streamflow prediction performance by various deep learning schemes

  • Le, Xuan-Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.131-131
    • /
    • 2021
  • Deep learning models, especially those based on long short-term memory (LSTM), have presented their superiority in addressing time series data issues recently. This study aims to comprehensively evaluate the performance of deep learning models that belong to the supervised learning category in streamflow prediction. Therefore, six deep learning models-standard LSTM, standard gated recurrent unit (GRU), stacked LSTM, bidirectional LSTM (BiLSTM), feed-forward neural network (FFNN), and convolutional neural network (CNN) models-were of interest in this study. The Red River system, one of the largest river basins in Vietnam, was adopted as a case study. In addition, deep learning models were designed to forecast flowrate for one- and two-day ahead at Son Tay hydrological station on the Red River using a series of observed flowrate data at seven hydrological stations on three major river branches of the Red River system-Thao River, Da River, and Lo River-as the input data for training, validation, and testing. The comparison results have indicated that the four LSTM-based models exhibit significantly better performance and maintain stability than the FFNN and CNN models. Moreover, LSTM-based models may reach impressive predictions even in the presence of upstream reservoirs and dams. In the case of the stacked LSTM and BiLSTM models, the complexity of these models is not accompanied by performance improvement because their respective performance is not higher than the two standard models (LSTM and GRU). As a result, we realized that in the context of hydrological forecasting problems, simple architectural models such as LSTM and GRU (with one hidden layer) are sufficient to produce highly reliable forecasts while minimizing computation time because of the sequential data nature.

  • PDF

LIHAR model for forecasting realized volatilities featuring long-memory and asymmetry (장기기억성과 비대칭성을 띠는 실현변동성의 예측을 위한 LIHAR모형)

  • Shin, Jiwon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1213-1229
    • /
    • 2016
  • Cho and Shin (2016) recently demonstrated that an integrated HAR model has a forecast advantage over the HAR model of Corsi (2009). Recalling that realized volatilities of financial assets have asymmetries, we add a leverage term to the integrated HAR model, yielding the LIHAR model. Out-of-sample forecast comparisons show superiority of the LIHAR model over the HAR and IHAR models. The comparison was made for all the 20 realized volatilities in the Oxford-Man Realized Library focusing specially on the DJIA, the S&P 500, the Russell 2000, and the KOSPI. Analysis of the realized volatility data sets reveal apparent long-memory and asymmetry. The LIHAR model takes advantage of the long-memory and asymmetry and produces better forecasts than the HAR, IHAR, LHAR models.