• Title/Summary/Keyword: long-term deformations

Search Result 47, Processing Time 0.02 seconds

Structural analysis of cracked R.C. members subjected to sustained loads and imposed deformations

  • Mola, F.;Gatti, M.C.;Meda, G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.637-650
    • /
    • 2001
  • A structural analysis of cracked R.C. members under instantaneous or sustained loads and imposed displacements is presented. In the first part of the paper the problem of deriving feasible moment-curvature diagrams for a long term analysis of R.C. sections is approached in an exact way by using the Reduced Relaxation Function Method in state I uncracked and the method suggested by CEB in state II cracked. In both states the analysis of the main parameters governing the problem has shown that it is possible to describe the concrete creep behaviour in an approximate way by using the algebraic formulation connected to the Effective Modulus Method. In this way the calculations become quite simple and can be applied in design practice without introducing significant errors. Referring to continuous beams, the structural analysis is then approached in a general way, applying the Force Method and the Principle of Virtual Works. Finally, considering single members, the structural analysis is performed by means of a graphical procedure based on the application of feasible moment-rotation diagrams which allow to easily solve various structural problems and to point out the most interesting aspects of the long term behaviour of cracked R.C. members with rigid or elastically deformable redundant restraints.

Analytical evaluation of the influence of vertical bridge deformation on HSR longitudinal continuous track geometry

  • Lai, Zhipeng;Jiang, Lizhong;Liu, Xiang;Zhang, Yuntai;Zhou, Tuo
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.473-488
    • /
    • 2022
  • A high-speed railway (HSR) bridge may undergo long-term deformation due to the degradation of material stiffness, or foundation settlement during its service cycle. In this study, an analytical model is set up to evaluate the influence of this long-term vertical bridge deformation on the track geometry. By analyzing the structural characteristics of the HSR track-bridge system, the energy variational principle is applied to build the energy functionals for major components of the track-bridge system. By further taking into account the interlayer's force balancing requirements, the mapping relationship between the deformation of the track and the one of the bridge is established. In order to consider the different behaviors of the interlayers in compression and tension, an iterative method is introduced to update the mapping relationship. As for the validation of the proposed mapping model, a finite element model is created to compare the numerical results with the analytical results, which show a good agreement. Thereafter, the effects of the interlayer's different properties of tension and compression on the mapping deformations are further evaluated and discussed.

A Rheological Approach on the Predicting of Concrete Creep (유변학을 이용한 콘크리트 크리프 거동 예측)

  • Kwon, Ki-Yeon;Min, Kyung-Hwan;Kim, Yul-Hui;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.697-700
    • /
    • 2008
  • The object of this paper is to propose a logical prediction model of a concrete creep using rheology. Rheology is the study on the flow and stress relationship of matter under the influence of an applied stress. It is also estimated as an effective theory to describe concrete long-term deformations. According to a time dependency and a mechanism of occurrence, the proposed creep model was divided into four components, such as an elastic deformation, a long-term creep, a time dependent short-term creep and a time independent short-term creep. Evaluation on an actual creep deformation pattern by time passage confirmed these classification. In order to approve a rationality of the proposed model, most coefficients of each components were derived by the microprestresssolidification theory and design codes. Numerical approaches were also used when it was restricted within narrow limits. Finally, the proposed rheolgical model was verified by actual creep test results and compared with common methods.

  • PDF

Time-Dependent Deformation Characteristics of Geosynthetic-Reinforced Soil Using Plane Strain Compression Tests (평면변형압축시험을 이용한 보강토의 시간 의존적 변형 특성 연구)

  • Yoo Chung-Sik;Kim Sun-Bin;Lee Bong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.85-97
    • /
    • 2005
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exist concerns over long-term residual deformation when subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependent deformation characteristics of geosynthetic reinforced soil under sustained and/or repeated loads were investigated using a series of plane strain compression tests on geogrid reinforced weathered granite soil specimens. The results indicate that sustained or repeated loads can yield appreciable magnitudes of residual deformations, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.

Long-Term Performance of High Strength Concrete

  • Choi Yeol;Kang Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.425-431
    • /
    • 2004
  • This paper describes an experimental investigation of how time-dependent deformations of high strength concretes are affected by maximum size of coarse aggregate, curing time, and relatively low sustained stress level. A set of high strength concrete mixes, mainly containing two different maximum sizes of coarse aggregate, have been used to investigate drying shrinkage and creep strain of high strength concrete for 7 and 28-day moist cured cylinder specimens. Based upon one-year experimental results, drying shrinkage of high strength concrete was significantly affected by the maximum size of coarse aggregate at early age, and become gradually decreased at late age. The larger the maximum size of coarse aggregate in high strength concrete shows the lower the creep strain. The prediction equations for drying shrinkage and creep coefficient were developed on the basis of the experimental results, and compared with existing prediction models.

Thin-walled composite steel-concrete beams subjected to skew bending and torsion

  • Giussani, Francesca;Mola, Franco
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.275-301
    • /
    • 2009
  • The long-term behaviour of simply supported composite steel-concrete beams with deformable connectors subjected to skew bending and torsion is presented. The problem is dealt with by recurring to the displacement method, assuming the bending and torsional curvatures and the longitudinal deformations of each sectional part as unknowns and obtaining a system of differential and integro-differential equations. Some solving methods are presented, in order to obtain exact and approximate solutions and evaluate the precision of the approximate ones. A case study is then presented. For the sake of clearness, the responses of the composite beam under loads applied in different directions are studied separately, in order to correctly evaluate the effects of each load condition.

Creep analysis of concrete filled steel tube arch bridges

  • Wang, Y.F.;Han, B.;Du, J.S.;Liu, K.W.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.639-650
    • /
    • 2007
  • Applying the method calculating creep of Concrete Filled steel Tube (CFT) members based on the Elastic Continuation and Plastic Flow theory for concrete creep with the finite element method, the paper develops a new numerical method for the creep of CFT arch bridges considering effects of bending moment. It is shown that the method is feasible and reasonable through comparing the predicted stresses and deflection caused by the creep with the results obtained by the method of Gu et al. (2001) based on ACI209R model and experimental data of an actual CFT arch bridge. Furthermore, nine CFT arch bridges with different types are calculated and analyzed with and without the effects of bending moment. As a result, the bending moment has considerable influences on long-term deformations and internal forces of CFT arch bridges, especially when the section of arch rib is subjected to a large bending moment.

Thermal Behavior Analysis of a CNC Lathe (CNC 선반의 열적 거동 해석)

  • 안경기;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.778-783
    • /
    • 1994
  • In operating automated manufacturing system, the long term stability and reliability of NC machine tools become most critical issues. Especially the machining accuracy is dominated by the thermal deformation of machine tools which remains still unsolved and causes troubles in manufacturing operations. Although researches have been carried out on the thermal behavior of a machine tools to minimize or control the thermal deformation of machine tools, the computer models for an analysis of the thermal behacior in machine tools has yet to appear in the open literature. The object of the paper is to present a method of modeling the thermal behavior of a machine tool. The method will make use of finite elements ad be capable of modeling whole machine structures as well as of heat generation processes in the kinematic system components. And temperature distributions and thermal deformations of a CNC lathe are analyzed using the finite element method and are compared with those measured in practice.

  • PDF

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.

Investigation of Live Load Deflection Limit for Steel Cable Stayed and Suspension Bridges

  • Park, Ki-Jung;Kim, Do-Young;Hwang, Eui-Seung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1252-1264
    • /
    • 2018
  • Long span bridges such as steel cable stayed and suspension bridges are usually more flexible than short to medium span bridges and expected to have large deformations. Deflections due to live load for long span bridges are important since it controls the overall heights of the bridge for securing the clearance under the bridge and serviceability for securing the comfort of passengers or pedestrians. In case of sea-crossing bridges, the clearance of bridges is determined considering the height of the ship master from the surface of the water, the trim of the ship, the psychological free space, the tide height, and live load deflection. In the design of bridges, live load deflection is limited to a certain value to minimize the vibrations. However, there are not much studies that consider the live load deflection and its effects for long span bridges. The purpose of this study is to investigate the suitability of live load deflection limit and its actual effects on serviceability of bridges for steel cable-stayed and suspension bridges. Analytical study is performed to calculate the natural frequencies and deflections by design live load. Results are compared with various design limits and related studies by Barker et al. (2011) and Saadeghvaziri et al. (2012). Two long span bridges are selected for the case study, Yi Sun-Sin grand bridge (suspension bridge, main span length = 1545 m) and Young-Hung grand bridge (cable stayed bridge, main span length = 240 m). Long-term measured deflection data by GNSS system are collected from Yi Sun-Sin grand bridge and compared with the theoretical values. Probability of exceedance against various deflection limits are calculated from probability distribution of 10-min maximum deflection. The results of the study on the limitation of live load deflection are expected to be useful reference for the design, the proper planning and deflection review of the long span bridges around the world.