In the design and condition assessment of bridges, it is usually necessary to take into consideration the extreme conditions which are not expected to occur within a short time period and thus require an extrapolation from observations of limited duration. Long-term structural health monitoring (SHM) provides a rich database to evaluate the extreme conditions. This paper focuses on the extrapolation of extreme traffic load effects on bridges using long-term monitoring data of structural strain. The suspension Tsing Ma Bridge (TMB), which carries both highway and railway traffic and is instrumented with a long-term SHM system, is taken as a testbed for the present study. Two popular extreme value extrapolation methods: the block maxima approach and the peaks-over-threshold approach, are employed to extrapolate the extreme stresses induced by highway traffic and railway traffic, respectively. Characteristic values of the extreme stresses with a return period of 120 years (the design life of the bridge) obtained by the two methods are compared. It is found that the extrapolated extreme stresses are robust to the extrapolation technique. It may owe to the richness and good quality of the long-term strain data acquired. These characteristic extremes are also compared with the design values and found to be much smaller than the design values, indicating conservative design values of traffic loading and a safe traffic-loading condition of the bridge. The results of this study can be used as a reference for the design and condition assessment of similar bridges carrying heavy traffic, analogous to the TMB.
Kim, Hyun-Joong;Moon, Dae Joong;Nam, Soon Sung;Jeong, Ju Yong
Journal of the Computational Structural Engineering Institute of Korea
/
v.29
no.3
/
pp.219-227
/
2016
In this study, we have proposed a method of monitoring of bridges under construction in view of the long-term behavior of the prestress concrete bridge of which the Free Cantilever Method is applied. As a method to confirm the ability of the long-term behavior of the concrete box girder, temperature sensors and strain gauges were installed, and the measured data was used to calculate creep coefficient. Moreover, we have measured the stress of the concrete box girder during construction which was applied with creep coefficient and compared with the changes in temperature to analyze the vertical displacement along the segment. In conclusion, monitoring of the FCM bridge during construction in consideration of the long-term behavior can be analyzed efficiently by suing temperature and displacement data without the use of laser displacement meter or laser delfectometer.
DuraMote is a remote sensing system developed for the "NIST TIP project: next generation SCADA for prevention and mitigation of water system infrastructure disaster". It is designed for supervisory control and data acquisition (SCADA) of ruptures in water pipes. Micro-electro mechanical (MEMS) accelerometers, which record the vibration of the pipe wall, are used detect the ruptures. However, the performance of Duramote cannot be verified directly on a water distribution system because it lacks an acceptable recordable level of ambient vibration. Instead, a long-span cable-stayed bridge is an ideal test-bed to validate the accuracy, the reliability, and the robustness of DuraMote because the bridge has an acceptable level of ambient vibration. The acceleration data recorded on the bridge were used to identify the modal properties of the structure and to verify the performance of DuraMote. During the test period, the bridge was subjected to heavy rain, wind, and a typhoon but the system demonstrates its robustness and durability.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.11
no.5
/
pp.108-122
/
2001
As bridge design is advancing toward the performance-based design. it becomes increasingly important to monitor and re-evaluate the long-term structural performance of bridges. Such information is essential in developing performance criteria for design. In this research. sensor systems for long-term structural performance monitoring have been installed on two highway bridges. Pre1iminary vibration measurement and data analysis have been performed on these instrumented bridges. On one bridge, ambient vibration data have been collected. based on which natural frequencies and mode shapes have been extracted using various methods and compared with those obtained by the preliminary finite element analysis. On the other bridge, braking and bumping vibration tests have been carried out using a water truck In addition to ambient vibration tests. Natural frequencies and mode shapes have been derived and the results by the breaking and bumping vibration tests have been compared. For the development of a three dimensional baseline finite element model, the new methodology using a neural network is proposed. The proposed one have been verified and applied to develop the baseline model of the bridge.
The Jiangyin Bridge is a suspension bridge with a main span of 1385 m over the Yangtze River in Jiangsu Province, China. Being the first bridge with a main span exceeding 1 km in Chinese mainland, it had been instrumented with a structural health monitoring (SHM) system when completed in 1999. After operation for several years, it was found with malfunction in sensors and data acquisition units, and insufficient sensors to provide necessary information for structural health evaluation. This study reports the SHM system upgrade project on the Jiangyin Bridge. Although implementations of SHM system have been reported worldwide, few studies are available on the upgrade of SHM system so far. Recognizing this, the upgrade of original SHM system for the bridge is first discussed in detail. Especially, lessons learned from the original SHM system are applied to the design of upgraded SHM system right away. Then, performance assessment of the bridge, including: (i) characterization of temperature profiles and effects; (ii) recognition of wind characteristics and effects; and (iii) identification of modal properties, is carried out by making use of the long-term monitoring data obtained from the upgraded SHM system. Emphasis is placed on the verification of design assumptions and prediction of bridge behavior or extreme responses. The results may provide the baseline for structural health evaluation.
In this paper, a fuzzy inference system and an analytical hierarchy process-based online evaluation technique is developed to monitor the condition of the 32-km Donghai Bridge in Shanghai. The system has 478 sensors distributed along eight segments selected from the whole bridge. An online evaluation subsystem is realized, which uses raw data and extracted features or indices to give a set of hierarchically organized condition evaluations. The thresholds of each index were set to an initial value obtained from a structure damage and performance evolution analysis of the bridge. After one year of baseline monitoring, the initial threshold system was updated from the collected data. The results show that the techniques described are valid and reliable. The online method fulfills long-term infrastructure health monitoring requirements for the Donghai Bridge.
Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.
With more and more built long-term structural health monitoring (SHM) systems, it has been considered to apply monitored data to learn the reliability of bridges. In this paper, based on a long-term SHM system, especially in which the sensors were embedded from the beginning of the construction of the bridge, a method to calculate the localized reliability around an embedded sensor is recommended and implemented. In the reliability analysis, the probability distribution of loading can be the statistics of stress transferred from the monitored strain which covered the effects of both the live and dead loads directly, and it means that the mean value and deviation of loads are fully derived from the monitored data. The probability distribution of resistance may be the statistics of strength of the material of the bridge accordingly. With five years' monitored strains, the localized reliabilities around the monitoring sensors of a bridge were computed by the method. Further, the monitored stresses are classified into two time segments in one year period to count the loading probability distribution according to the local climate conditions, which helps us to learn the reliability in different time segments and their evolvement trends. The results show that reliabilities and their evolvement trends in different parts of the bridge are different though they are all reliable yet. The method recommended in this paper is feasible to learn the localized reliabilities revealed from monitored data of a long-term SHM system of bridges, which would help bridge engineers and managers to decide a bridge inspection or maintenance strategy.
Lee, Kyu Wan;Han, Jong Wook;Kim, Chul-Young;Park, Young Suk
KSCE Journal of Civil and Environmental Engineering Research
/
v.39
no.4
/
pp.469-475
/
2019
A long-term bridge monitoring system has been introduced and is under operation for long-term safety management of the structure. However, it is difficult to assess the condition of the quantitative structural system as it only measures responses and does not measure input loads. To overcome these shortcomings, FBG (Fiber Bragg Grating)-based input load measurement sensors were developed in this paper for measuring highway bridge input loads and their validity was verified through laboratory tests.
Condition assessment and monitoring of bridges is critical for safe passenger travel, public transportation, and efficient freight. In monitoring, displacement measurement capability is important to keep track of performance of bridge, in part or as whole. One of the most important parts of a bridge is the expansion joint, which accommodates continuous cyclic thermal expansion of the whole bridge. Though expansion joint is critical for bridge performance, its inspection and monitoring has not been considered significantly because the monitoring requires long-term data using cost intensive equipment. Recently, a wireless smart sensor network (WSSN) has drawn significant attention for transportation infrastructure monitoring because of its merits in low cost, easy installation, and versatile on-board computation capability. In this paper, a rapid wireless displacement monitoring system, wireless hybrid sensor (WHS), has been developed to monitor displacement of expansion joints of bridges. The WHS has been calibrated for both static and dynamic displacement measurement in laboratory environment, and deployed on an in-service highway bridge to demonstrate rapid expansion joint monitoring. The test-bed is a continuous steel girder bridge, the Founders Bridge, in East Hartford, Connecticut. Using the WHS system, the static and dynamic displacement of the expansion joint has been measured. The short-term displacement trend in terms of temperature is calculated. With the WHS system, approximately 6% of the time has been spent for installation, and 94% of time for the measurement showing strong potential of the developed system for rapid displacement monitoring.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.