• Title/Summary/Keyword: long-period fiber gratings

Search Result 46, Processing Time 0.026 seconds

Enhancement of free spectral range in the resonance peaks in a long period fiber grating by controlling clad mode material dispersion (광섬유 클래딩 모드의 분산 특성 조절에 의한 장주기 격자 내에서의 공명 피크의 free spectral range 향상)

  • Jeong, Hoon;Oh, K.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.72-73
    • /
    • 2000
  • Optical fiber gratings have been intensively studied for applications in optical fiber communications and sensor systems due to their all-fiber configuration, low insertion loss, low cost, and high flexibility. Especially, cladding mode coupling fiber devices such as long period gratings (LPG) and acousto-optic tunable filters (AOTF) have been developed as a gain equalization filter in erbium doped fiber amplifier (EDFA) for wavelength division multiplexing (WDM) systems$^{(1-2)}$ . (omitted)

  • PDF

Hydrogen Sensor Based on A Palladium-Coated Long-Period Fiber Grating Pair

  • Kim, Young-Ho;Kim, Myoung-Jin;Park, Min-Su;Jang, Jae-Hyung;Lee, Byeong-Ha;Kim, Kwang-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.221-225
    • /
    • 2008
  • We propose a simple hydrogen detection scheme based on a Mach-Zehnder interferometer formed with a pair of palladium-coated long-period fiber gratings (LPGs). Since an LPG pair offered a fine-structured interference fringe in its transmission spectrum, the resolution as a sensor could be appreciably enhanced compared to that of a single LPG. As the palladium layer absorbed hydrogen, the effective refractive indices of the cladding modes were increased so that the interference spectrum was blue-shifted up to 2.3 nm with a wavelength sensitivity of -0.29 nm/min for 4% of hydrogen concentration.

Resonant Wavelength Characteristics of Arc-Induced Long-Period Fiber Gratings (아크 유도 장주기 광섬유 격자의 공진 파장 특성)

  • Chung, Chul;Lee, Ho-Joon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.48-56
    • /
    • 2002
  • A fabrication method of long--period fiber gratings (LPFGs) that can be easily controlled resonance wavelength and losses is introduced. We used the superposition method that core and cladding diameter are modulated by applying a number of small electric-arc to the normal fiber. We derived an equation of resonance wavelength change according to core diameter variation using the phase matching condition and showed the results are well matched with experiments. The measured resonant wavelengths of arc-induced superposition LPFGs according to grating period are well coincident with that of phase matching condition. The resonance wavelength is measured for the temperature changes and a slight mechanical strength degradation of arc-induced LPFGs is observed by increasing arc times.

Novel Raman Fiber Laser and Fiber-Optic Sensors Using Multi-Channel Fiber Gratings

  • Han, Young-Geun;Kim, Sang-Hyuck;Lee, Sang-Bae;Kim, Chang-Seok;Kang, Jin-U.;Paek, Un-Chul;Chung, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • The transmission characteristics of multi-channel long period fiber gratings (LPFGs) in terms of the physical parameters like the separation distance, grating length and number of gratings will be discussed. Their transmission characteristics such as channel spacing, number of channels, loss peak depth, and channel bandwidth can be easily controlled by physical parameters. Based on the experimental results, their applications to optical multiwavelength Raman lasers and optical sensors will be investigated. A multiwavelength Raman fiber ring laser with 9 WDM channels with 100 ㎓ spacing and 19 channels with 50 ㎓ spacing using tunable multi-channel LPFGs will be experimentally demonstrated. The fiber-optic sensing applications with high resolution and sensitivity based on multi-channel LPFGs will be also presented.

High Repetition Rate Optical Pulse Multiplication with Cascaded Long-period Fiber Gratings

  • Lee, Byeang-Ha;Eom, Tae-Joong;Kim, Sun-Jong;Park, Chang-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • We propose and demonstrate a novel optical pulse multiplier applicable to OTDM (Optical Time Division Multiplexing) systems using cascaded long-period fiber gratings. We have exploited the fact that each mode in a fiber has a different propagation constant to obtain time delays among optical pulses. The proposed scheme could realize high-frequency optical pulse multiplication for optical short pulse trains. We have successfully implemented two, four, and eight times multiplications with the maximum repetition rate of 416.7 ㎓. The obtained pulse delays are well matched with the simulated ones.

Fabrication of an Optical Fiber Amplifier Using Long-period Fiber Gratings Formed by Periodically Arrayed Metal Wire (금속선의 주기적 배열로 유도된 장주기 격자를 이용한 이득 평탄화된 광섬유 증폭기 제작)

  • Sohn, Kyung-Rak;Hwang, Woong;Shim, June-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.833-837
    • /
    • 2007
  • In this study, we have fabricated a gain flattened erbium-doped optical fiber amplifier. Gain flattening filters were realized by the strain-induced long period fiber gratings, which are made of periodically arrayed metal wires. Using the filter of $550{\mu}m$ period, spontaneous emission amplified at C-band wavelength by a 980nm pumping laser was flattened within 1dB of gain ripple. The performance of the simultaneous multi channel amplification was measured using a fabry-perot laser diode. Amplification ratio was above 20dB. This amplifier can be applied to the long distance transmission system based on a wavelength division multiplexing for boosting an attenuated signal.

Passive Temperature Compensation Package for Optical Long Period Fiber Gratings

  • Lee, Sang-Mae;Gu, Xijia
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.74-79
    • /
    • 1999
  • We present a simple design rule for a passive temperature-compensating optical package. We also present experimentally that a package fabricated by using the design rule compensates the temperature dependence of the resonant wavelength of an optical long period fiber grating by varying the strain inside the fiber, The package fabricated in this work consists of two pieced of brass tube, 10 mm long, and a piece of nylon rod, 45.4 mm long. It is shown that the package can compensate the temperature-induce wavelength shifts of the long period grating to a range of 6.8 pm/$^{\circ}C$, compared with 0..48 nm/$^{\circ}C$ for an uncompensated grating. The reduced strength of the fiber caused by exposure to ultraviolet limits the performance of the package to the range operating temperature form -3 $^{\circ}C$ to 7$0^{\circ}C$.

A Study on the Measurement System Design for the Resin Flow and Curing in the Vacuum Assisted Resin Transfer Molding(VARTM) Process Using the Long Period Fiber Bragg Grating (삽입된 장주기 광섬유 격자를 이용한 VARTM 공정에서의 수지이동 및 변형 과정 예측 시스템 설계에 관한 연구)

  • Yoon, Young-Ki;Chung, Seung-Hwan;Lee, Woo-Il;Lee, Byoung-Ho;Byun, Joon-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.489-494
    • /
    • 2004
  • Long Period Gratings (LPG) is currently receiving considerable attention because of their consistent measuring results fur pressure, temperature, strain and flow. LPG is easier to prepare and has a high sensitivity compared with Fiber Bragg Gratings (FBG). In addition, this kind of optical fiber sensors could be used for implementations in various structures. In this paper, LPG was used to monitor in situ the resin flow and the curing process in VARTM (Vacuum Assisted Resin Transfer. Molding). In order to demonstrate the effectiveness of the method, FBG is inserted into the glass mat to monitor the resin flow using optical spectrum analyzer (OSA). The curing reactions in VARTM are also observed using the same method. From the results, the attenuation wavelength shift and the loss change of attenuation band can be obtained from the status of the RTM (Resin Transfer Molding) sample owing to the internal variations of the .effective index, temperature, and pressure. It is shown that the proposed LPG is more effective in monitoring the curing reaction than FBG.

Fabrication and characteristics of mechanically induced long-period fiber gratings (기계적으로 유도된 장주기 광섬유격차의 제작 및 특성분석)

  • 함정우;이종훈;이경식
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.485-488
    • /
    • 2001
  • The transmission spectra, the wavelength tunability. and the polarization characteristics of mechanically induced long-period fiber gratings (LPFG's) are investigated experimentally and analyzed theoretically. The transmission and mode coupling characteristics of the fabricated LPFG's agree well with the theoretical results. The resonant wavelengths at which the mode coupling occurs can be tuned over 180 nm and the peak wavelengths for of oethogonally polarized lights are split by -9 nm.

  • PDF