• Title/Summary/Keyword: long tunnel

Search Result 645, Processing Time 0.034 seconds

Assessment of elastic-wave propagation characteristics in grouting-improved rock mass around subsea tunnels (해저터널 주변 그라우팅 보강암반의 탄성파 전달특성 평가)

  • Kim, Ji-Won;Hong, Eun-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • Grouting is frequently used before the construction of subsea tunnels to mitigate problems that can occur in weak ground zones such as joints, faults or unconsolidated settlements during construction. The grout material injected into rock mass often flows through the discontinuities present in the host rock and hence, joint properties such as its distribution, roughness and thickness greatly affect the properties of grouting-improved rocks. The grouting-improved zones near subsea tunnels are also subjected to high water pressures that can cause long-term weathering in the form of changes in grout microstructure and crack formation and lead to subsequent changes in ground properties. Therefore, an assessment method is needed to accurately measure changes in the grouting-improved zones near subsea tunnels. In this study, the elastic wave propagation characteristics in grouting-improved rocks were tested for various axial stress levels, curing time, joint roughness and thickness conditions under laboratory conditions and the results were compared with wave velocity standards in different Korean rock mass classification systems to provide a basis for inferring improvement in grouted rock-mass.

Nonlinear Analysis of Rubber Bellows for the High Speed Railway Vehicle (고속철도차량 갱웨이 벨로우즈의 비선형 해석)

  • Kang, Gil-Hyun;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3631-3637
    • /
    • 2013
  • Gangway bellows in this study is the double wrinkled neoprene rubber component to accept various deviations between the carriage end parts of the articulated type high speed railway vehicle(HSRV). The fatigue failure of the bellows has a harmful effect on the riding comfort for the passengers with the increase of noise and ringing in the ears due to air-tightness failure during pass through a long tunnel. In this study, to assure the safety of gangway bellows of the HSRV, non-linear analysis of the gangway bellows considering triaxial angular displacement(rolling /yawing/pitching) between the carriage end parts are performed. The non-linear properties of the rubber are determined by uniaxial tension and equi-biaxial tension test. Moreover, from the results of non-linear analysis, the effects of the angular displacements and frictional coefficients are evaluated.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Song, Yoon-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1100-1109
    • /
    • 2006
  • In this study, two different technologies which can measure temperature simultaneously at many points are introduced. One is to use a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel within a single cable. The other is to use an optic fiber with Distributed Temperature Sensing (DTS) system. The difference between two technologies can be summarized as follows. A thermal sensor cable has a concept of 'point sensing' that can measure temperature at accurate position of a thermal sensor. So the accuracy and resolution of temperature measurement are up to the ability of the thermal sensor. Whereas optic fiber sensor has a concept of 'distributed sensing' because temperature is measured by ratio of Stokes and anti-Stokes component intensities of Raman backscatter that is generated when laser pulse travels along an optic fiber. It's resolution is determined by measuring distance, measuring time and spatial resolution. The purpose of this study is that application targets of two temperature measurement techniques are checked in technical and economical phases by examining the strength and weakness of them. Considering the functions and characteristics of two techniques, the thermal sensor cable will be suitable to apply to the assessment of groundwater flow, geothermal distribution and grouting efficiency within 300m distance. It is expected that the optic fiber sensor can be widely utilized at various fields (for example: pipe line inspection, tunnel fire detection, power line monitoring etc.) which need an information of temperature distribution over relatively long distance.

  • PDF

An Experimental Study on the Turbulent Flow of a 45$^{\circ}C$ Free Cross Jet (450自由衝突 噴射 의 亂流流動 에 관한 實驗的 硏究)

  • 노병준;김장권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 1984
  • Turbulent jet flow has been studied in many ways; a plane jet, a rectangular jet, an annular jet, a round jet, a wall jet, a parallel jet, a valve jet, a cross jet, a slit jet and etc. In this report, a 45.deg. cross jet flow was tried by using two same dimensioned nozzels(dia..phi.20)which were set up at the exit of the subsonic wind tunnel. Each jet flows to the direction of 22.5.deg. to the axis of downstream of the mixed flow. The centerline of each jet meets at the distance of 217.3mm and their mixing flow could be imagined to develop beyond that distance, so the measurement was effectuated at X/X$_{0}$=1.2-1.5. The section of the mixed flow a elliptic circle which is formed by the 22.5.deg. inclined flows to the X direction. This experimental study aimed at the investigation of the turbulent mixing process of two jets; the mean velocities, the turbulent shear stresses, the correlation coefficients, and the momentum were respectively measured. The mean velocity distribution profiles of the down-stream component measured in the Y direction coincide well with the empirical equation of Gortler and those measured in the Z direction agree with the equation of H. Schlichting. Other mean velocities V over bar and W over bar components were randomly distributed. The higher values with same order of the intensity of turbulence were largely distributed at the central part of the flow. The momentum was decreased up to 70% by the shock losses and the development of intense turbulences, but it kept its value constantly beyond X/d=14. Two-channel hot-wire anemometer systems (model 1050 series), X-type hot-wire made of tungsten (dia. .phi.e.mu.m, long 3mm, model 0252 T5), a computer(model HP 9845B0, and a plotter (model HP 9872C) were used for the experiments and the analyses.s.

Experimental Study on the Improvement of Shotcrete Performance by Addition of Calcium Aluminate Based Accelerator and Metakaolin (시멘트 광물계 급결제와 메타카올린에 의한 숏크리트의 고성능화에 대한 실험적 연구)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Park, Hae-Geun;Won, Jong-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.237-247
    • /
    • 2006
  • The use of high-performance shotcrete lining is indispensable to improve long-term durability of a tunnel and to apply the single-shell tunnelling method. Among a lot of shotcrete admixtures, pozzolan materials such as silica fume have positive effects on increasing the strength and the durability of shotcrete. It is also well known that a cement-based accelerator is much faster in setting time and more eco-friendly than conventional accelerators. This study aimed to improve the properties of wet-mix shotcrete by incorporating with Metakaolin and the calcium aluminate based accelerator. To compare Metakaolin with silica fume, mixing ratios of each material were varied as 4% and 8% of cement weight. Moreover, Metakaolin was blended with silica fume, and their binder was also set to 4% and 8% of cement weight. At each mixing condition, setting time, compressive strength, flexural strength, permeability and freezing-thawing resistance were measured. From the experiments, it was revealed Metakaolin could be a substituting material for silica fume.

Effect of steel fibers on surface electric resistivity of steel fiber reinforced concrete for shield segment (강섬유보강 콘크리트 세그먼트의 강섬유가 표면전기저항에 미치는 영향)

  • Moon, Do-Young;Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.557-569
    • /
    • 2011
  • Steel Fiber Reinforced Concrete (SFRC) is widely used for tunnel structures such as shotcrete and segments. Corrosion of steel fibers and steel reinforcements may affect on the long-term durability of the concrete structures with steel fibers and reinforcement. Therefore, a study on the feasible method to evaluate corrosion possibility and permeability of the concrete structures is required. This experimental study examines the effect of steel fibers and internal reinforcement on the surface resistivity. Steel fiber mix ratio and corrosion of internal reinforcement were considered as variables. In the results, steel fibers significantly reduce the surface resistivity due to those conductive characteristic. In the case of 3% mix ratio, it was difficult to evaluate rate and permeability of corrosion due to the great reduction of resistivity by mixing of steel fibers.

A Study on the Temperature Distribution Change of the Spent Nuclear Fuel Disposal Canister and its Surrounding Structures due to the Spent Fuel Heat according to the Deposition Time Elapse (고준위폐기물 열에 의한 처분용기 및 처분용기 주위 구조물의 시간경과에 따른 온도분포 변화)

  • Choi, Jong-Won;Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • The prediction of the temperature distribution change of the spent nuclear fuel disposal canister and its surrounding structures (bentonite buffer, granitic rock etc.) due to the spent fuel heat is very important for the design of the 500m deep granitic repository for the spent nuclear fuel disposal canister (about 10,000 years long) deposition. In this study, the temperature distribution change of the composite structure which comprises the canister, the bentonite buffer, the deposition tunnel due to the spent fuel heat is computed using the numerical analysis method. Specially, the temperature distribution change of the composite structure is analysed as the deposition time elapses up to m years. The analysis result shows that the temperature of each part of the repository increases slowly in different way but the latest part temperature increases slowly up to 150 years and thereafter decreases slowly.

Deformation Characteristics of Construction Joint of Paved Track on Earthwork Section using the Accelerated Track Test (궤도가속실험을 통한 포장궤도 토공구간 시공이음매부의 변형특성 연구)

  • Lee, Il-Wha;Jang, Seung-Yup;Kang, Yoon-Suk;Um, Ju-Hwan;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.521-527
    • /
    • 2010
  • The Paved Track is applied to reduce maintenance cost of conventional line. The Paved Track could be used in all types of lines including earthwork, bridge, tunnel and turnout sections. In case of earthwork section, the construction joint is the most critical factor to track durability. The construction joint does not affect to the track structure directly, but the gap due to discontinuity of slabs may affect to the long-term serviceability. To evaluate this problem, the accelerated track test has been performed on the construction joint and the middle part to of the real scale Paved Track. The purpose of this test is that evaluate the vulnerability of construction joint section comparing the trends of settlement and earth pressure under repeated loads of construction joint with those of the middle slab part.

Antibacterial Characteristics of Silver Nano-Particles Attached to Activated Carbon Filter (은나노를 부착한 활성탄 필터의 제균특성)

  • Heo, Ju-Yeong;Nam, Sang-Yeob;Kang, Jeong-Hee;Song, Ji-Hyeon;Kang, Byung-Ha;Han, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.583-589
    • /
    • 2009
  • Activated carbon has long been used in purification processes for indoor air quality. However, the bioaerosol removal by activated carbon is not often sufficient to be used in an air control devise. In order to overcome these problems, silver nano-particles have been proposed as an antibacterial agent on the surface of activated carbon. Silver or silver ions have been known for antimicrobial activities. In this study, bioaerosol generated by using an Escherichia coli culture was introduced to a lab-scale column packed with activated carbon (AC) and silver nano-particles attached to activated carbon (Ag-AC). E. coli was almost completely removed in the Ag-AC column, whereas bioaerosol penetrated through the AC column. To determine the antibacterial effect of different filter materials in a full-scale air-handling system, another experiment was conducted using a wind tunnel equipped with a heat exchanger and three filter materials including commercial fabric, AC and Ag-AC. It was found that E. coli proliferated on the surface of the heat exchanger after 5 days, which dramatically increased bioaerosol counts in the effluent air stream. The fabric filter could not control the increased bioaerosol and most of the E. coli penetrated the filter. The bacterial removal efficiency was found to be approximately 45% in the AC filter, while the antibacterial efficiency increased to 70% using the Ag-AC filter. Consequently, the Ag-AC filter can be an effective method to control bioaerosol and improve indoor air quality.

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.