• Title/Summary/Keyword: long tunnel

Search Result 652, Processing Time 0.025 seconds

Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge

  • Hua, Xu G.;Chen, Zheng Q.;Lei, Xu;Wen, Qin;Niu, Hua W.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.683-693
    • /
    • 2019
  • In August 2012, during the passage of the typhoon Haikui (1211), large amplitude vibrations were observed on long hangers of the Xihoumen suspension Bridge, which destroyed a few viscoelastic dampers originally installed to connect a pair of hanger ropes transversely. The purpose of this study is to identify the cause of vibration and to develop countermeasures against vibration. Field measurements have been conducted in order to correlate the wind and vibration characteristics of hangers. Furthermore, a replica aeroelastic model of prototype hangers consisting of four parallel ropes was used to study the aeroelastic behavior of hanger ropes and to examine the effect of the rigid spacers on vibration mitigation. It is shown that the downstream hanger rope experiences the most violent elliptical vibration for certain wind direction, and the vibration is mainly attributed to wake interference of parallel hanger ropes. Based on wind tunnel tests and field validation, it is confirmed that four rigid spacers placed vertically at equal intervals are sufficient to suppress the wake-induced vibrations. Since the deployment of spacers on hangers, server hanger vibrations and clash of hanger ropes are never observed.

PIV Measurements of Non-cavitating and Cavitating Flow in Wake of Two-dimensional Wedge-shaped Submerged Body (PIV를 이용한 2차원 쐐기형 몰수체 후류의 비공동 및 공동 유동장 계측)

  • Hong, Ji-Woo;Jeong, So-Won;Ahn, Byong-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.26-32
    • /
    • 2019
  • The vortex flow behind a bluff body has been a subject of interest for a very long time because of its engineering applicability such as to vortex induced vibration. In the near wake of a bluff body, vortices are periodically shed in two shear layers, which originate in the trailing edges. The far wake is made up of the classical Karman vortices, which are connected together by streamwise and spanwise vortices. These vortex formations have been studied in many experimental and numerical ways. However, most of the studies considered non-cavitating flow. In this study, we investigated cavitating flow in the wake of a two-dimensional wedge. Experiments were conducted in a cavitation tunnel of Chungnam National University. Using a particle image velocimetry (PIV), we measured the velocity fields under two different flow conditions: non-cavitating and cavitating regimes. We also investigated the vortex shedding frequencies using an absolute pressure transducer mounted on the top of the test window. Throughout the experiments, it was found that the shedding frequency of the vortex was strongly affected by cavitation, and the Strouhal number could exceed its value in the non-cavitating regime.

Parenting experiences among fathers of prematurely-born children with cerebral palsy in South Korea

  • Park, Jisun;Bang, Kyung-Sook
    • Child Health Nursing Research
    • /
    • v.27 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Purpose: The symptoms and impairments caused by cerebral palsy usually require long-term treatment, resulting in a substantial burden on the family of affected children. This study explored the experiences of fathers with prematurely-born children with cerebral palsy, with a focus on how such experiences influenced their families. Methods: A qualitative case study method was used. Nine subjects were recruited from April 2018 to June 2019 at one hospital, and each was interviewed three times by a neonatal nurse. Results: Five core experiences of fathers were identified: "regret for an insufficient initial response", "confronting my child born as a premature baby", "the position of being a dad who can't do anything", "the process of treatment like a tunnel with no exit", and "a father's getting meaning in life through children". These stories covered an individual's timeline and family interactions. Conclusion: Our findings suggest that fathers of prematurely-born children tend to suppress their emotions; therefore, a novel intervention program to encourage fathers' emotional expression and to support healthier interactions with their families is needed. Moreover, our findings could contribute basic information for the construction of a community-based support system to aid families, including prematurely-born children and other persons with impairments.

Mechanized tunnels lining prefabricated segments production methods

  • Elaheh Banihashemigargari;Amir H. Rezaeifarei
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.503-512
    • /
    • 2023
  • In tunneling projects, a significant part of the costs is spent on segment production. By more economically producing, the cost of tunnel construction can be greatly reduced, especially in long and large-diameter tunnels. In the present study, the effect of using the Carousel method in the improvement of the production system performance compared to the conventional Static system has been studied. To carry out the research, a quantitative comparison of cost and production time was carried out for two production methods using the available documentation. The opinions of experts have been obtained using questionnaires and qualitative comparison of cost, time and production quality was done by implementation of statistical analysis. The SPSS software and the univariate t-test were used to analyze the questionnaires. According to the results of statistical analysis with SPSS, the use of the Carousel method will reduce production time and costs along with increasing manufacturing quality. According to the documentation analysis, the Carousel method reduces the cost of production by almost 30% and leads to a reduction of the production time to approximately 40% of the Static moulds system. The Carousel method has a higher production rate, efficiency, and better performance. Research into quantifying the benefits of Carousel method in the production system performance is very limited. This comparison is based on real information from the under construction Tabriz Metro project. This article can be very helpful in choosing the best production method.

Evaluation of Americium Solubility in Synthesized Groundwater: Geochemical Modeling and Experimental Study at Over-Saturation Conditions

  • Hee-Kyung Kim;Hye-Ryun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.399-410
    • /
    • 2022
  • The solubility and species distribution of radionuclides in groundwater are essential data for the safety assessment of deep underground spent nuclear fuel (SNF) disposal systems. Americium is a major radionuclide responsible for the long-term radiotoxicity of SNF. In this study, the solubility of americium compounds was evaluated in synthetic groundwater (SynDB3), simulating groundwater from the DB3 site of the KAERI Underground Research Tunnel. Geochemical modeling was performed using the ThermoChimie_11a thermochemical database. Concentration of dissolved Am(III) in Syn-DB3 in the pH range of 6.4-10.5 was experimentally measured under over-saturation conditions by liquid scintillation counting over 70 d. The absorption spectra recorded for the same period suggest that Am(III) colloidal particles formed initially followed by rapid precipitation within 2 d. In the pH range of 7.5-10.5, the concentration of dissolved Am(III) converged to approximately 2×10-7 M over 70 d, which is comparable to that of the amorphous AmCO3OH(am) according to the modeling results. As the samples were aged for 70 d, a slow equilibrium process occurred between the solid and solution phases. There was no indication of transformation of the amorphous phase into the crystalline phase during the observation period.

A long-term tunnel settlement prediction model based on BO-GPBE with SHM data

  • Yang Ding;Yu-Jun Wei;Pei-Sen Xi;Peng-Peng Ang;Zhen Han
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.17-26
    • /
    • 2024
  • The new metro crossing the existing metro will cause the settlement or floating of the existing structures, which will have safety problems for the operation of the existing metro and the construction of the new metro. Therefore, it is necessary to monitor and predict the settlement of the existing metro caused by the construction of the new metro in real time. Considering the complexity and uncertainty of metro settlement, a Gaussian Prior Bayesian Emulator (GPBE) probability prediction model based on Bayesian optimization (BO) is proposed, that is, BO-GPBE. Firstly, the settlement monitoring data are analyzed to get the influence of the new metro on the settlement of the existing metro. Then, five different acquisition functions, that is, expected improvement (EI), expected improvement per second (EIPS), expected improvement per second plus (EIPSP), lower confidence bound (LCB), probability of improvement (PI) are selected to construct BO model, and then BO-GPBE model is established. Finally, three years settlement monitoring data were collected by structural health monitoring (SHM) system installed on Nanjing Metro Line 10 are employed to demonstrate the effectiveness of BO-GPBE for forecasting the settlement.

Corrosion Behavior of Cu-Ni Alloy Film Fabricated by Wire-fed Additive Manufacturing in Oxic Groundwater

  • Gha-Young Kim;Jeong-Hyun Woo;Junhyuk Jang;Yang-Il Jung;Young-Ho Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.211-217
    • /
    • 2024
  • The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu-Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu-Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu-Ni film. The results demonstrated that the AM-fabricated Cu-Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.

Analysis of the Spent Fuel Cooling Time for a Deep Geological Disposal (심지층 처분을 일한 사용후핵연료 냉각기간 분석)

  • Lee, Jong-Youl;Cho, Dong-Geun;Choi, Heui-Joo;Choi, Jong-Won;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The purpose of the HLW deep geological disposal is to isolate and to delay the radioactive material release to human beings and the environment for a long time so that the toxicity does not affect to the environment. The main requirements for the HLW repository design is to keep the buffer temperature below $100\;^{\circ}C$ in order to maintain its integrity. So the cooling time of spent fuels discharged from the nuclear power plant is the key consideration factors for efficiency and economic feasibility of the repository. The disposal tunnel/disposal hole spacing, the disposal area and thermal capacity required for the deep geological repository layout which satisfies the temperature requirement of the disposal system is analyzed to set the optimized spent fuels cooling time. To do this, based on the reference disposal concept, thermal stability analyses of the disposal system have been performed and the derived results have been compared by setting the spent fuels cooling time and the disposal tunnel/disposal hole spacing in various ways. From these results, desirable spent fuels cooling time in view of disposal area is derived. The results shows that the time reaching the maximum temperature within the design limit of the temperature in the disposal site is likely shortened as the cooling time of spent fuels becomes short. Also it seems that the temperature-rising and-dropping patterns in the disposal site are of smoothly varying form as the cooling time of spent fuels becomes long. In addition, it is revealed that a desirable cooling time of spent fuels is approximately 40-50 years when spent fuels are supposedly disposed in the deep geological disposal site with its structural scale under consideration in this study.

  • PDF

A Study on the Permeability Reduction Methods of the Riverbed Ground during Urban Railway Tunnel construction (도시철도터널공사 시 하저통과구간의 지반투수저하 공법에 대한 연구)

  • Kim, Joon-Jeong;Cho, Kook-Hwan;Lee, Jun-Seok
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.551-557
    • /
    • 2007
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. Firstly, the various grouting methods are theoretically reviewed and compared based on the previous research papers and case study results. It is also evaluated the grouting methods in view of a safe construction of the river crossing railway tunnel. Baced on the literature review and previous construction data, the design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, is suggested. Two injection methods namely, Natural Durable Stabilizer(N.D.S) and Space-Multi Injaction Grouting(S.M.I) methods, are introduced as new approach methods which can be adopted to modify the riverbed ground. In order to evaluate the ground that grouted and modified by the N.D.S and S.M.I method, the pilot test programmes including the field and laboratory permeability tests, are carried out in the river crossing tunnel construction sites. The results obtained from pilot test programme, are also reviewed. In conclusion, the grouting efficiency of the S.M.I method using the non-alcalimeter silica sol is better than that of NDS method using cement. In addition, it hopes that the research results are contributed to develop the grouting design technology.

  • PDF

Surgical Treatment of Complications after Fontan Operation (Fontan수술후의 합병증에 대한 수술적 치료)

  • 박정준;홍장미;김용진;이정렬;노준량
    • Journal of Chest Surgery
    • /
    • v.36 no.2
    • /
    • pp.73-78
    • /
    • 2003
  • The Fontan operation has undergone a number of major modifications and clinical results have been improving over time. Nevertheless, during the follow-up period, life-threatening complications develop and affect the long-term outcomes. Surgical interventions for these complications are needed and are increasing. Material and Method: From April 1988 to January 2000, 16 patients underwent reoperations for complications after Fontan operation. The mean age at reoperation was 8.8 :-5.5 years. Initial Fontan operations were atriopulmonary connections in 8 and total cavopulmonary connections in 8. Total cavopulmonary connections were accomplished with intracardiac lateral tunnel in 5 and extracardiac epicardial lateral tunnel in 3. Five patients had variable sized fenestrations. The reasons for reoperations included residual shunt in 6, pulmonary venous obstruction in 3, atrial flutter in 3, atrioventricular valve regurgitation in 2, Fontan pathway stenosis in 1, and protein-losing enteropathy in 1 Result: There were 3 early and late deaths respectively Patients who had residual shunts underwent primary closure of shunt site (n=2), atrial reseptation for separation between systemic and pulmonary vein (n=2), conversion to lateral tunnel (n=1), and conversion to one and a half ventricular repair (n=1). Four patients who had stenotic lesion of pulmonary vein or Fontan pathway underwent widening of the lesion (n=3) and left pneumonectomy (n=1) In cases of atrial flutter, conversion to lateral tunnel after revision of atriopulmonary connections was performed (n=3). For the atrioventricular valve regurgitation (n=2), we performed a replacement with mechanical valve. In one patient who had developed protein-losing enteropathy, aorto-pulmonary collateral arteries were obliterated via thoracotomy. Cryoablation was performed concomitantly in 4 patients as an additional treatment modality of atrial arrhythmia. Conclusion: Complications after Fontan operation are difficult to manage and have a considerable morbidity and mortality. However, more accurate understanding of Fontan physiology and technical advancement increased the possibility of treatment for such complications as well as Fontan operation itself. Appropriate surgical treatment for these patients relieved the symptoms and improved the functional class, Although the results were not satisfactory enough in all patients.