• Title/Summary/Keyword: long term neural network

Search Result 394, Processing Time 0.033 seconds

Development of Real-Time Face Region Recognition System for City-Security CCTV (도심방범용 CCTV를 위한 실시간 얼굴 영역 인식 시스템)

  • Kim, Young-Ho;Kim, Jin-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.504-511
    • /
    • 2010
  • In this paper, we propose the face region recognition system for City-Security CCTV(Closed Circuit Television) using hippocampal neural network which is modelling of human brain's hippocampus. This system is composed of feature extraction, learning and recognition part. The feature extraction part is constructed using PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis). In the learning part, it can label the features of the image-data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in a dentate gyrus and remove the noise through the auto-associative memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are shape change and light change. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.

Variation for Mental Health of Children of Marginalized Classes through Exercise Therapy using Deep Learning (딥러닝을 이용한 소외계층 아동의 스포츠 재활치료를 통한 정신 건강에 대한 변화)

  • Kim, Myung-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.725-732
    • /
    • 2020
  • This paper uses variables following as : to follow me well(0-9), it takes a lot of time to make a decision (0-9), lethargy(0-9) during physical activity in the exercise learning program of the children in the marginalized class. This paper classifies 'gender', 'physical education classroom', and 'upper, middle and lower' of age, and observe changes in ego-resiliency and self-control through sports rehabilitation therapy to find out changes in mental health. To achieve this, the data acquired was merged and the characteristics of large and small numbers were removed using the Label encoder and One-hot encoding. Then, to evaluate the performance by applying each algorithm of MLP, SVM, Dicesion tree, RNN, and LSTM, the train and test data were divided by 75% and 25%, and then the algorithm was learned with train data and the accuracy of the algorithm was measured with the Test data. As a result of the measurement, LSTM was the most effective in sex, MLP and LSTM in physical education classroom, and SVM was the most effective in age.

Regression and ANN models for durability and mechanical characteristics of waste ceramic powder high performance sustainable concrete

  • Behforouz, Babak;Memarzadeh, Parham;Eftekhar, Mohammadreza;Fathi, Farshid
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.119-132
    • /
    • 2020
  • There is a growing interest in the use of by-product materials such as ceramics as alternative materials in construction. The aim of this study is to investigate the mechanical properties and durability of sustainable concrete containing waste ceramic powder (WCP), and to predict the results using artificial neural network (ANN). In this order, different water to binder (W/B) ratios of 0.3, 0.4, and 0.5 were considered, and in each W/B ratio, a percentage of cement (between 5-50%) was replaced with WCP. Compressive and tensile strengths, water absorption, electrical resistivity and rapid chloride permeability (RCP) of the concrete specimens having WCP were evaluated by related experimental tests. The results showed that by replacing 20% of the cement by WCP, the concrete achieves compressive and tensile strengths, more than 95% of those of the control concrete, in the long term. This percentage increases with decreasing W/B ratio. In general, by increasing the percentage of WCP replacement, all durability parameters are significantly improved. In order to validate and suggest a suitable tool for predicting the characteristics of the concrete, ANN model along with various multivariate regression methods were applied. The comparison of the proposed ANN with the regression methods indicates good accuracy of the developed ANN in predicting the mechanical properties and durability of this type of concrete. According to the results, the accuracy of ANN model for estimating the durability parameters did not significantly follow the number of hidden nodes.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

Development of Demand Forecasting Algorithm in Smart Factory using Hybrid-Time Series Models (Hybrid 시계열 모델을 활용한 스마트 공장 내 수요예측 알고리즘 개발)

  • Kim, Myungsoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.187-194
    • /
    • 2019
  • Traditional demand forecasting methods are difficult to meet the needs of companies due to rapid changes in the market and the diversification of individual consumer needs. In a diversified production environment, the right demand forecast is an important factor for smooth yield management. Many of the existing predictive models commonly used in industry today are limited in function by little. The proposed model is designed to overcome these limitations, taking into account the part where each model performs better individually. In this paper, variables are extracted through Gray Relational analysis suitable for dynamic process analysis, and statistically predicted data is generated that includes characteristics of historical demand data produced through ARIMA forecasts. In combination with the LSTM model, demand forecasts can then be calculated by reflecting the many factors that affect demand forecast through an architecture that is structured to avoid the long-term dependency problems that the neural network model has.

Real-Time Fault Detection in Discrete Manufacturing Systems Via LSTM Model based on PLC Digital Control Signals (PLC 디지털 제어 신호를 통한 LSTM기반의 이산 생산 공정의 실시간 고장 상태 감지)

  • Song, Yong-Uk;Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • A lot of sensor and control signals is generated by an industrial controller and related internet-of-things in discrete manufacturing system. The acquired signals are such records indicating whether several process operations have been correctly conducted or not in the system, therefore they are usually composed of binary numbers. For example, once a certain sensor turns on, the corresponding value is changed from 0 to 1, and it means the process is finished the previous operation and ready to conduct next operation. If an actuator starts to move, the corresponding value is changed from 0 to 1 and it indicates the corresponding operation is been conducting. Because traditional fault detection approaches are generally conducted with analog sensor signals and the signals show stationary during normal operation states, it is not simple to identify whether the manufacturing process works properly via conventional fault detection methods. However, digital control signals collected from a programmable logic controller continuously vary during normal process operation in order to show inherent sequence information which indicates the conducting operation tasks. Therefore, in this research, it is proposed to a recurrent neural network-based fault detection approach for considering sequential patterns in normal states of the manufacturing process. Using the constructed long short-term memory based fault detection, it is possible to predict the next control signals and detect faulty states by compared the predicted and real control signals in real-time. We validated and verified the proposed fault detection methods using digital control signals which are collected from a laser marking process, and the method provide good detection performance only using binary values.

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

A Study on the Index Estimation of Missing Real Estate Transaction Cases Using Machine Learning (머신러닝을 활용한 결측 부동산 매매 지수의 추정에 대한 연구)

  • Kim, Kyung-Min;Kim, Kyuseok;Nam, Daisik
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.171-181
    • /
    • 2022
  • The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.

Electric Power Demand Prediction Using Deep Learning Model with Temperature Data (기온 데이터를 반영한 전력수요 예측 딥러닝 모델)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.307-314
    • /
    • 2022
  • Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.

Flight State Prediction Techniques Using a Hybrid CNN-LSTM Model (CNN-LSTM 혼합모델을 이용한 비행상태 예측 기법)

  • Park, Jinsang;Song, Min jae;Choi, Eun ju;Kim, Byoung soo;Moon, Young ho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • In the field of UAM, which is attracting attention as a next-generation transportation system, technology developments for using UAVs have been actively conducted in recent years. Since UAVs adopted with these technologies are mainly operated in urban areas, it is imperative that accidents are prevented. However, it is not easy to predict the abnormal flight state of an UAV causing a crash, because of its strong non-linearity. In this paper, we propose a method for predicting a flight state of an UAV, based on a CNN-LSTM hybrid model. To predict flight state variables at a specific point in the future, the proposed model combines the CNN model extracting temporal and spatial features between flight data, with the LSTM model extracting a short and long-term temporal dependence of the extracted features. Simulation results show that the proposed method has better performance than the prediction methods, which are based on the existing artificial neural network model.